Busca avançada
Ano de início
Entree

Simetrias de Lie e leis de conservação do sistema de Lane-Emden

Processo: 11/19089-6
Modalidade de apoio:Auxílio à Pesquisa - Regular
Data de Início da vigência: 01 de março de 2012
Data de Término da vigência: 28 de fevereiro de 2014
Área do conhecimento:Ciências Exatas e da Terra - Matemática - Matemática Aplicada
Pesquisador responsável:Igor Leite Freire
Beneficiário:Igor Leite Freire
Instituição Sede: Centro de Matemática, Computação e Cognição (CMCC). Universidade Federal do ABC (UFABC). Ministério da Educação (Brasil). Santo André , SP, Brasil
Assunto(s):Simetria 
Palavra(s)-Chave do Pesquisador:Leis de conservação | Simetrias de Lie | Simetrias de Noether | Sistema de Lane-Emden | Teorema de Ibragimov | Equações diferenciais

Resumo

Neste projeto encontraremos as simetrias de Lie, simetrias de Noether e leis de conservação do sistema de Lane-Emden. (AU)

Matéria(s) publicada(s) na Agência FAPESP sobre o auxílio:
Mais itensMenos itens
Matéria(s) publicada(s) em Outras Mídias ( ):
Mais itensMenos itens
VEICULO: TITULO (DATA)
VEICULO: TITULO (DATA)

Publicações científicas (20)
(Referências obtidas automaticamente do Web of Science e do SciELO, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores)
FREIRE, IGOR LEITE; SANTOS SAMPAIO, JULIO CESAR. On the nonlinear self-adjointness and local conservation laws for a class of evolution equations unifying many models. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, v. 19, n. 2, SI, p. 350-360, . (11/19089-6, 11/23538-0)
SANTOS SAMPAIO, JULIO CESAR; FREIRE, IGOR LEITE. Nonlinear Self-Adjoint Classification of a Burgers-KdV Family of Equations. Abstract and Applied Analysis, . (11/19089-6, 11/23538-0)
BOZHKOV, YURI; FREIRE, IGOR LEITE; IBRAGIMOV, NAIL H.. Group analysis of the Novikov equation. COMPUTATIONAL & APPLIED MATHEMATICS, v. 33, n. 1, p. 193-202, . (11/19089-6)
FREIRE, IGOR LEITE; TORRISI, MARIANO. Symmetry methods in mathematical modeling of Aedes aegypti dispersal dynamics. Nonlinear Analysis: Real World Applications, v. 14, n. 3, p. 1300-1307, . (11/19089-6, 11/20072-0)
FREIRE, IGOR LEITE; DA SILVA, PRISCILA LEAL; TORRISI, MARIANO. Lie and Noether symmetries for a class of fourth-order Emden-Fowler equations. Journal of Physics A-Mathematical and Theoretical, v. 46, n. 24, . (10/10259-3, 11/19089-6, 11/20072-0)
IGOR LEITE FREIRE. New conservation laws for inviscid Burgers equation. COMPUTATIONAL & APPLIED MATHEMATICS, v. 31, n. 3, p. 559-567, . (11/19089-6)
Y. BOZHKOV; I.L. FREIRE. Remarks on symmetry analysis of Lane-Emden systems of dimensions one and two. TEMA (São Carlos), v. 14, n. 2, p. 245-254, . (11/19089-6)
FREIRE, IGOR LEITE; TORRISI, MARIANO. Similarity solutions for systems arising from an Aedes aegypti model. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, v. 19, n. 4, p. 872-879, . (11/19089-6, 11/20072-0)
FREIRE, IGOR LEITE; TORRISI, MARIANO. Symmetry methods in mathematical modeling of Aedes aegypti dispersal dynamics. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, v. 14, n. 3, p. 8-pg., . (11/20072-0, 11/19089-6)
FREIRE, IGOR LEITE; SANTOS SAMPAIO, JULIO CESAR. On the nonlinear self-adjointness and local conservation laws for a class of evolution equations unifying many models. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, v. 19, n. 2, p. 11-pg., . (11/23538-0, 11/19089-6)
SANTOS SAMPAIO, JULIO CESAR; FREIRE, IGOR LEITE. Nonlinear Self-Adjoint Classification of a Burgers-KdV Family of Equations. Abstract and Applied Analysis, v. N/A, p. 7-pg., . (11/23538-0, 11/19089-6)
FREIRE, IGOR LEITE. New conservation laws for inviscid Burgers equation. COMPUTATIONAL & APPLIED MATHEMATICS, v. 31, n. 3, p. 9-pg., . (11/19089-6)
NAZ, REHANA; FREIRE, IGOR LEITE; NAEEM, IMRAN. Comparison of Different Approaches to Construct First Integrals for Ordinary Differential Equations. Abstract and Applied Analysis, . (11/19089-6)
FREIRE, IGOR LEITE; TORRISI, MARIANO. Weak Equivalence Transformations for a Class of Models in Biomathematics. Abstract and Applied Analysis, . (11/19089-6, 11/20072-0)
TRACINA, RITA; LEITE FREIRE, IGOR; TORRISI, MARIANO. Nonlinear self-adjointness of a class of third order nonlinear dispersive equations. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, v. 32, p. 225-233, . (11/19089-6, 14/05024-8)
FREIRE, IGOR LEITE. New classes of nonlinearly self-adjoint evolution equations of third- and fifth-order. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, v. 18, n. 3, p. 493-499, . (11/19089-6)
BOZHKOV, YURI; FREIRE, IGOR LEITE. On the Lane-Emden system in dimension one. Applied Mathematics and Computation, v. 218, n. 21, p. 10762-10766, . (11/19089-6)
FREIRE, IGOR LEITE; TORRISI, MARIANO. Weak Equivalence Transformations for a Class of Models in Biomathematics. Abstract and Applied Analysis, v. N/A, p. 9-pg., . (11/20072-0, 11/19089-6)
NAZ, REHANA; FREIRE, IGOR LEITE; NAEEM, IMRAN. Comparison of Different Approaches to Construct First Integrals for Ordinary Differential Equations. Abstract and Applied Analysis, v. N/A, p. 15-pg., . (11/19089-6)
BOZHKOV, YURI; FREIRE, IGOR LEITE; IBRAGIMOV, NAIL H.. Group analysis of the Novikov equation. COMPUTATIONAL & APPLIED MATHEMATICS, v. 33, n. 1, p. 10-pg., . (11/19089-6)