| Processo: | 19/16276-1 |
| Modalidade de apoio: | Bolsas no Exterior - Estágio de Pesquisa - Iniciação Científica |
| Data de Início da vigência: | 01 de novembro de 2019 |
| Data de Término da vigência: | 31 de janeiro de 2020 |
| Área de conhecimento: | Ciências Exatas e da Terra - Ciência da Computação - Teoria da Computação |
| Pesquisador responsável: | Mário César San Felice |
| Beneficiário: | Renata Sarmet Smiderle Mendes |
| Supervisor: | Regina Esther Berretta |
| Instituição Sede: | Centro de Ciências Exatas e de Tecnologia (CCET). Universidade Federal de São Carlos (UFSCAR). São Carlos , SP, Brasil |
| Instituição Anfitriã: | University of Newcastle, Austrália |
| Vinculado à bolsa: | 18/13083-5 - Algoritmos de aproximação para o problema da localização de instalações, BP.IC |
| Assunto(s): | Algoritmos de aproximação Otimização combinatória Meta-heurística Problemas de localização de facilidades |
| Palavra(s)-Chave do Pesquisador: | Algoritmos de Aproximação | Metaheurísticas | Problema da localização de instalações | Otimização Combinatória |
Resumo No Problema de Localização de Instalações, procura-se decidir quantas e quais instalações abrir para atender às demandas de conexão dos clientes. É um problema muito relevante tanto pelo seu interesse teórico, sendo um problema NP-difícil amplamente estudado e para o qual inúmeros algoritmos de aproximação e metaheurísticas são conhecidos, bem como por ser motivado por aplicações práticas, modelando problemas como posicionamento de planta, construção de redes de computadores e agrupamento de informações.Este projeto tem como objetivo estudar metaheurísticas para o Problema da Localização de Instalações e aprender como combiná-las com os algoritmos de aproximação já estudados, a fim de alcançar boas soluções. A implementação desses algoritmos seguida de uma análise empírica dos resultados também é um objetivo deste projeto. Acreditamos que os resultados alcançados serão interessantes para a comunidade científica.Este projeto BEPE tem como objetivo complementar a formação da aluna em Ciência da Computação, aprofundando seus conhecimentos em otimização combinatória, metaheurísticas, algoritmos de aproximação e técnicas para o desenho e análise de algoritmos. (AU) | |
| Matéria(s) publicada(s) na Agência FAPESP sobre a bolsa: | |
| Mais itensMenos itens | |
| TITULO | |
| Matéria(s) publicada(s) em Outras Mídias ( ): | |
| Mais itensMenos itens | |
| VEICULO: TITULO (DATA) | |
| VEICULO: TITULO (DATA) | |