Busca avançada
Ano de início
Entree


Aplicação de máquinas de vetor de suporte e modelos auto-regressivos de média móvel na classificação de sinais eletromiográficos.

Texto completo
Autor(es):
Mateus Ymanaka Barretto
Número total de Autores: 1
Tipo de documento: Dissertação de Mestrado
Imprenta: São Paulo.
Instituição: Universidade de São Paulo (USP). Escola Politécnica (EP/BC)
Data de defesa:
Membros da banca:
Cinthia Itiki; Andre Fabio Kohn; Mauro Roberto Ushizima
Orientador: Cinthia Itiki
Resumo

O diagnóstico de doenças neuromusculares é feito pelo uso conjunto de várias ferramentas. Dentre elas, o exame de eletromiografia clínica fornece informações vitais ao diagnóstico. A aplicação de alguns classificadores (discriminante linear e redes neurais artificiais) aos diversos parâmetros dos sinais de eletromiografia (número de fases, de reversões e de cruzamentos de zero, freqüência mediana, coeficientes auto-regressivos) tem fornecido resultados promissores na literatura. No entanto, a necessidade de um número grande de coeficientes auto-regressivos direcionou este mestrado ao uso de modelos auto-regressivos de média móvel com um número menor de coeficientes. A classificação (em normal, neuropático ou miopático) foi feita pela máquina de vetor de suporte, um tipo de rede neural artificial de uso recente. O objetivo deste trabalho foi o de estudar a viabilidade do uso de modelos auto-regressivos de média móvel (ARMA) de ordem baixa, em vez de auto-regressivos de ordem alta, em conjunção com a máquina de vetor de suporte, para auxílio ao diagnóstico. Os resultados indicam que a máquina de vetor de suporte tem desempenho melhor que o discriminante linear de Fisher e que os modelos ARMA(1,11) e ARMA(1,12) fornecem altas taxas de classificação (81,5%), cujos valores são próximos ao máximo obtido com modelos auto-regressivos de ordem 39. Portanto, recomenda-se o uso da máquina de vetor de suporte e de modelos ARMA (1,11) ou ARMA(1,12) para a classificação de sinais de eletromiografia de agulha, de 800ms de duração e amostrados a 25kHz. (AU)

Processo FAPESP: 05/57398-0 - Modelagem auto-regressiva de media movel e redes neurais artificiais na classificacao de sinais eletromiograficos.
Beneficiário:Mateus Ymanaka Barretto
Modalidade de apoio: Bolsas no Brasil - Mestrado