Busca avançada
Ano de início
Entree


Integração de processos quimicos continuos em tempo real: estudo de caso para fornos rotativos de incineração

Texto completo
Autor(es):
Eduardo Thomaz Inglez de Souza
Número total de Autores: 1
Tipo de documento: Tese de Doutorado
Imprenta: Campinas, SP.
Instituição: Universidade Estadual de Campinas (UNICAMP). Faculdade de Engenharia Quimica
Data de defesa:
Membros da banca:
Rubens Maciel Filho; Edson Tomaz; Eduardo Coselli Vasco de Toledo; Paulo Ignacio Fonseca de Almeida; Roberto Guardani
Orientador: Rubens Maciel Filho
Resumo

Esta Tese de Doutorado está comprometida com a aplicação de técnicas computacionais que permitam auxiliar a integração de processos químicos contínuos em tempo real. Para tal faz-se necessário um estudo de caso, que para este trabalho foi adotado um fomo rotativo para incineradores de resíduos sólidos, cujas características são simuladas por meio de um modelo matemático. O objetivo principal é estudar o comportamento do processo em camadas, uma de controle avançado e outra para otimização. Sendo que a de otimização dividi-se em duas: processo e produção. Os controladores utilizados foram os tradicionais DMC (dynamic matrix control) e GPC (generalized predictive control), mais duas versões não lineares baseadas nestes. O primeiro destes controladores não lineares usa a estrutura do DMC, entretanto o modelo preditivo da dinâmica do processo dá-se por uma rede neural, a qual incorporou o comportamento não linear do modelo matemático do processo. O outro controlador não linear usa uma rede neural para predizer os parâmetros de um modelo de primeira ordem com tempo morto. Uma vez que estes parâmetros são atualizados tem-se um modelo dinâmico preditivo não linear. Com a finalidade de comparar a performance destes controladores avançados, um controlador PID é usado como referência, já que é o padrão para este tipo de processo. As leis de controle, que são problemas de otimização linear e não linear, são resolvidas com um algoritmo S.Q.P. A otimização da produção refere-se ao planejamento e controle, sendo que a modelagem obtida resulta em um problema linear com restrições também deste tipo. Sua resolução dá-se por meio de um algoritmo SIMPLEX. Quanto ao processo tem-se um problema de otimização não linear, cuja meta é calcular as vazões de combustível e ar secundário a partir de variações na vazão de alimentação do resíduo sólido, e seu respectivo poder calorífico. O otimizador visa minimizar o consumo do combustível auxiliar, respeitando restrições ambientais e operacionais, explicitadas na temperatura da câmara de combustão. Esta camada hierárquica faz uso do mesmo algoritmo S.Q.P mencionado acima e uma alternativa baseada em programação genética, para se obter os resultados desejados. O otimizador tem duas possibilidades para simular o processo: um modelo determinístico e uma rede neural baseada neste modelo. Os resultados mostraram que os controladores lineares (DMC e GPC) são robustos, estáveis e com tempo de processamento numérico mais que suficientes para integra-los em tempo real. Os controladores não lineares ficam restritos a processos cujas dinâmicas não sejam muito rápidas, na ordem de 30 segundos, após perturbação. Estas afirmações estão baseadas em controladores monovariados. A otimização da produção por ser linear, não apresentou problemas de convergência, tão pouco no tempo de processamento computacional. A otimização do processo também não foi problemática, excesso quando se usava o algoritmo genético com o modelo determinístico para a otimização. A integração das partes envolvidas funcionou com muita robustez, fornecendo uma ferramenta valiosa para o desenvolvimento de processos químicos contínuos em tempo real (AU)

Processo FAPESP: 00/00934-3 - Integração de processos químicos contínuos em tempo real: desenvolvimento e aplicação para fornos rotativos
Beneficiário:Eduardo Thomaz Inglez de Souza
Modalidade de apoio: Bolsas no Brasil - Doutorado