Busca avançada
Ano de início
Entree


Um Framework para criação e simulação de Redes Neurais Artificiais utilizando Component Object Model

Texto completo
Autor(es):
Humberto Costa de Sousa
Número total de Autores: 1
Tipo de documento: Dissertação de Mestrado
Imprenta: São Carlos.
Instituição: Universidade de São Paulo (USP). Instituto de Ciências Matemáticas e de Computação (ICMC/SB)
Data de defesa:
Membros da banca:
Solange Oliveira Rezende; Aluizio Fausto Ribeiro Araujo; Marco Dimas Gubitoso
Orientador: André Carlos Ponce de Leon Ferreira de Carvalho
Resumo

Tarefas envolvendo Reconhecimento de Padrões vêm se tornando mais freqüentes em diferentes domínios de aplicação. A maioria destas tarefas tem sido eficientemente tratada através da utilização de Redes Neurais Artificiais. Entre os modelos de Redes Neurais mais difundidos, destaca-se o modelo Perceptron Multi-Camadas (Multi-Layer Perceptron ou MLP). Entretanto, o desempenho de uma Rede Neural MLP em um determinado problema depende diretamente da topologia adotada, que deve ser determinada no inicio do processo de treinamento. A escolha da topologia de uma Rede Neural não é trivial, normalmente resultando em uma busca exaustiva pela configuração mais apropriada. Com o objetivo de auxiliar a determinação da topologia de uma Rede Neural, vários métodos foram desenvolvidos para a automação deste processo, entre os quais encontram-se as Redes Neurais Construtivas. Estas redes utilizam Algoritmos Construtivos que, a partir de uma rede mínima, inserem gradualmente novos neurônios e conexões durante o treinamento, procurando melhorar o desempenho da mesma. Contudo, a avaliação da melhor aplicação de diferentes Algoritmos Construtivos em um mesmo problema depende da homogeneidade do seu ambiente de treinamento. Este trabalho fornece a definição de um conjunto de classes abstratas para permitir que diferentes algoritmos de treinamento, incluindo Algoritmos Construtivos, sejam criados como componentes com acesso estritamente definido para futura utilização em diferentes aplicações. Através do uso destes componentes em uma nova versão do Simulador para Redes Neurais Artificiais Kipu, a análise da eficiência de Redes Neurais Construtivas em tarefas reais de Reconhecimento de Padrões teve início. (AU)

Processo FAPESP: 98/13395-1 - Utilização de redes neurais construtivas para reconhecimento de padrões
Beneficiário:Humberto Costa de Sousa
Modalidade de apoio: Bolsas no Brasil - Mestrado