Busca avançada
Ano de início
Entree


Predição de defeitos cruzada entre projetos apoiado por meta-aprendizado

Texto completo
Autor(es):
Faimison Rodrigues Porto
Número total de Autores: 1
Tipo de documento: Tese de Doutorado
Imprenta: São Carlos.
Instituição: Universidade de São Paulo (USP). Instituto de Ciências Matemáticas e de Computação (ICMC/SB)
Data de defesa:
Membros da banca:
Adenilso da Silva Simão; André Carlos Ponce de Leon Ferreira de Carvalho; Reginaldo Ré; Simone do Rocio Senger de Souza; Silvia Regina Vergilio
Orientador: Adenilso da Silva Simão
Resumo

Modelos de predição de defeitos auxiliam profissionais de teste na priorização de partes do software mais propensas a conter defeitos. A abordagem de predição de defeitos cruzada entre projetos (CPDP) refere-se à utilização de projetos externos já conhecidos para compor o conjunto de treinamento. Essa abordagem é útil quando a quantidade de dados históricos de defeitos é inapropriada ou insuficiente para compor o conjunto de treinamento. Embora o princípio seja atrativo, o desempenho de predição é um fator limitante nessa abordagem. Nos últimos anos, vários métodos foram propostos com o intuito de melhorar o desempenho de predição de modelos CPDP. Contudo, na literatura, existe uma carência de estudos comparativos que apontam quais métodos CPDP apresentam melhores desempenhos. Além disso, não há evidências sobre quais métodos CPDP apresentam melhor desempenho para um domínio de aplicação específico. De fato, não existe um algoritmo de aprendizado de máquina que seja apropriado para todos os domínios de aplicação. A tarefa de decisão sobre qual algoritmo é mais adequado a um determinado domínio de aplicação é investigado na literatura de meta-aprendizado. Um modelo de meta-aprendizado é caracterizado pela sua capacidade de aprender a partir de experiências anteriores e adaptar seu viés de indução dinamicamente de acordo com o domínio alvo. Neste trabalho, nós investigamos a viabilidade de usar meta-aprendizado para a recomendação de métodos CPDP. Nesta tese são almejados três principais objetivos. Primeiro, é conduzida uma análise experimental para investigar a viabilidade de usar métodos de seleção de atributos como procedimento interno de dois métodos CPDP, com o intuito de melhorar o desempenho de predição. Segundo, são investigados quais métodos CPDP apresentam um melhor desempenho em um contexto geral. Nesse contexto, também é investigado se os métodos com melhor desempenho geral apresentam melhor desempenho para os mesmos conjuntos de dados (ou projetos de software). Os resultados revelam que os métodos CPDP mais adequados para um projeto podem variar de acordo com as características do projeto sendo predito. Essa constatação conduz à terceira investigação realizada neste trabalho. Foram investigadas as várias particularidades inerentes ao contexto CPDP a fim de propor uma solução de meta-aprendizado capaz de aprender com experiências anteriores e recomendar métodos CPDP adequados, de acordo com as características do software. Foram avaliados a capacidade de meta-aprendizado da solução proposta e a sua performance em relação aos métodos base que apresentaram melhor desempenho geral. (AU)

Processo FAPESP: 13/01084-3 - Investigação de Teste de Software sob a Perspectiva da Teoria de Redes Complexas
Beneficiário:Faimison Rodrigues Porto
Modalidade de apoio: Bolsas no Brasil - Doutorado