Busca avançada
Ano de início
Entree


Reconhecimento de implicação textual em português

Texto completo
Autor(es):
Erick Rocha Fonseca
Número total de Autores: 1
Tipo de documento: Tese de Doutorado
Imprenta: São Carlos.
Instituição: Universidade de São Paulo (USP). Instituto de Ciências Matemáticas e de Computação (ICMC/SB)
Data de defesa:
Membros da banca:
Sandra Maria Aluisio; Fábio Natanael Kepler; Maria das Graças Volpe Nunes; Moacir Antonelli Ponti; Paulo Quaresma Neto
Orientador: Sandra Maria Aluisio
Resumo

O reconhecimento de implicação textual (RIT) consiste em identificar automaticamente se um trecho de texto em língua natural é verdadeiro baseado no conteúdo de outro. Este problema vem sendo estudado por pesquisadores da área de Processamento de Línguas Naturais (PLN) há alguns anos, e ganhou certo destaque mais recentemente, com a maior disponibilidade de dados anotados e desenvolvimento de métodos baseados em deep learning. Esta pesquisa de doutorado teve como objetivo o desenvolvimento de recursos e métodos computacionais para o RIT, com especial foco em língua portuguesa. Durante sua realização, foi compilado o corpus ASSIN, o primeiro a fornecer dados para treinamento e avaliação de sistemas de RIT em português, e foi organizado o workshop de mesmo nome, que reuniu pesquisadores interessados no tema. Além disso, foram feitos experimentos computacionais com diferentes tipos de estratégias para o RIT, com dados em inglês e em português. Foi desenvolvido um novo modelo para o RIT, o TEDIN (Tree Edit Distance Network). O modelo é baseado no conceito de distância de edição entre árvores sintáticas, já explorado em outros trabalhos de RIT. Seu diferencial é combinar a representação de conhecimento linguístico explícito com a flexibilidade e capacidade representativa de redes neurais. Foi também desenvolvido o Infernal, um modelo para RIT que usa técnicas clássicas de aprendizado de máquina com engenharia de atributos. Os resultados experimentais do TEDIN ficaram abaixo de outros modelos da literatura, e uma análise cuidadosa de seu comportamento indica a dificuldade de se modelar as diferenças entre árvores sintáticas. Por outro lado, o Infernal teve resultados positivos no ASSIN, definindo o novo estado-da-arte para o RIT em português. (AU)

Processo FAPESP: 13/22973-0 - Inferência textual aplicada a Sistemas de Perguntas e Respostas
Beneficiário:Erick Rocha Fonseca
Modalidade de apoio: Bolsas no Brasil - Doutorado