Busca avançada
Ano de início
Entree


Algoritmos paralelos de granularidade grossa em grafos bipartidos convexos

Texto completo
Autor(es):
Marco Aurélio Stefanes
Número total de Autores: 1
Tipo de documento: Tese de Doutorado
Imprenta: São Paulo.
Instituição: Universidade de São Paulo (USP). Instituto de Matemática e Estatística (IME/SBI)
Data de defesa:
Orientador: José Augusto Ramos Soares
Resumo

Neste trabalho discutimos os principais modelos de computação paralela e apresentamos, como principal foco do trabalho, soluções para alguns problemas em classes especiais de grafos usando modelos de granularidade grossa que acreditamos sirvam de reflexão para a validação de tais modelos. Tratamos alguns problemas em grafos bipartidos convexos. Estes problemas são: encontrar um emparelhamento máximo, encontrar um conjunto independente máximo, determinar um circuito hamiltoniano e determinar os caminhos mínimos entre todos os pares de vértices em grafos bipartidos biconvexos. Relatamos os resultados experimentais da implementação de alguns dos algoritmos apresentados. Como principais contribuições, descrevemos uma adaptação para o Modelo BSP/CGM de um algoritmo PRAM para encontrar uma coloração em grafos cujo grau máximo é limitado por uma constante, fazemos uma correção no algoritmo BSP/CGM de Bose et al [BCDL99] para encontrar um emparelhamento máximo em grafos bipartidos convexos, descrevemos um novo algoritmo seqüencial para encontrar um conjunto independente máximo nesta classe de grafo e estendemos a idéia deste algoritmo formulando um algoritmo para o modelo BSP/CGM, e desenvolvemos um algoritmo seqüencial linear para encontrar um circuito hamiltoniano de fácil paralelização nesta mesma classe (AU)

Processo FAPESP: 98/06327-0 - Algoritmos paralelos para grafos e geometria computacional.
Beneficiário:Marco Aurelio Stefanes
Modalidade de apoio: Bolsas no Brasil - Doutorado