Busca avançada
Ano de início
Entree


Visão computacional aplicada a imagens urbanas em nível de chão sem restrições

Texto completo
Autor(es):
Éric Keiji Tokuda
Número total de Autores: 1
Tipo de documento: Tese de Doutorado
Imprenta: São Paulo.
Instituição: Universidade de São Paulo (USP). Instituto de Matemática e Estatística (IME/SBI)
Data de defesa:
Membros da banca:
Roberto Marcondes Cesar Junior; Roberto Hirata Junior; João Paulo Papa; Hélio Pedrini; Anderson de Rezende Rocha
Orientador: Roberto Marcondes Cesar Junior
Resumo

Atualmente, as imagens são geradas em larga escala e de forma descentralizada. Essa modalidade de dados carrega informações valiosas, mas extrair essas informações nem sempre é trivial. Nesta tese, definimos e propomos soluções a desafios de visão computacional ao utilizar imagens no nível do solo. O primeiro desafio é a anotação de alto custo para avaliar métodos de detecção de objetos. No contexto da degradação da imagem imposta pelo clima, a segunda questão é a falta de análise que avalie o impacto dos métodos de chuvas nos algoritmos de detecção de objetos em imagens chuvosas. O terceiro desafio é a confiabilidade dos resultados da estimativa de densidade de uma rede real de sensores. O surgimento de dados da rede de sensores motiva o último problema, de estimar a degradação urbana na cidade usando imagens em nível de solo. Esses desafios definem o escopo desta tese. Para o primeiro problema, propusemos uma abordagem com menor custo de anotação para comparação de detectores de objetos e a aplicamos em uma abordagem de aprendizado semi-supervisionada usando imagens de vigilância. Para enfrentar o desafio dois, estabelecemos um protocolo e realizamos uma extensa referência de detecção de objetos quando precedidas por métodos de remoção de chuva. Encontramos fortes indicadores de que métodos atuais de remoção de chuva não podem melhorar de maneira robusta a precisão da posterior detecção de objetos quando aplicado dessa maneira direta. A terceira questão foi abordada através da criação de um modelo de detecção probabilística para estabelecer limites teóricos para os erros das distribuições detectadas. A abordagem foi validada usando simulação e aplicada para calcular o mapa de densidade de pedestres em Manhattan. Para atacar o último problema, coletamos sistematicamente imagens públicas de São Paulo e segmentamos as regiões afetadas, como indicadores da degradação urbana da região. O código fonte foi integralmente publicado. (AU)

Processo FAPESP: 14/24918-0 - Deep learning fracamente supervisionado para detecção de faces e atributos de pessoas
Beneficiário:Eric Keiji Tokuda
Modalidade de apoio: Bolsas no Brasil - Doutorado