Busca avançada
Ano de início
Entree


Recuperação de imagens com realimentação de relevancia baseada em programação genetica

Texto completo
Autor(es):
Cristiano Dalmaschio Ferreira
Número total de Autores: 1
Tipo de documento: Dissertação de Mestrado
Imprenta: Campinas, SP.
Instituição: Universidade Estadual de Campinas (UNICAMP). Instituto de Computação
Data de defesa:
Membros da banca:
Ricardo da Silva Torres; Altigran Soares da Silva; Marcos André Gonçalves; Neucimar Jerônimo Leite
Orientador: Ricardo da Silva Torres
Resumo

A técnica de realimentação de relevância tem sido utilizada com o intuito de incorporar a subjetividade da percepção visual de usuários à recuperação de imagens por conteúdo. Basicamente, o processo de realimentação de relevância consiste na: (i) exibição de um pequeno conjunto de imagens; (ii) rotulação dessas imagens pelo usuário, indicando quais são relevantes ou não; (iii) e finalmente, aprendizado das preferências do usuário a partir das imagens rotuladas e seleção de um novo conjunto de imagens para exibição. O processo se repete até que o usuário esteja satisfeito. Esta dissertação apresenta dois arcabouços para recuperação de imagens por conteúdo com realimentação de relevância. Esses arcabouços utilizam programação genética para assimilar a percepção visual do usuário por meio de uma combinação de descritores. A utilização de programação genética é motivada pela sua capacidade exploratória do espaço de busca uma vez que esse espaço se adequa ao objetivo principal dos arcabouços propostos: encontrar, dentre todas as possíveis funções de combinação de descritores, aquela que melhor representa as características visuais que um usuário deseja ressaltar na realização de uma consulta. Os arcabouços desenvolvidos foram validados por meio de uma série de experimentos, envolvendo três diferentes bases de imagens e descritores de cor, forma e textura para a caracterização do conteúdo dessas imagens. Os arcabouços propostos foram comparados com três outros métodos de recuperação de imagens por conteúdo com realimentação de relevância, considerando-se a eficiência e a efetividade no processo de recuperação. Os resultados experimentais mostraram a superioridade dos arcabouços propostos. As contribuições dessa dissertação são: (i) estudo sobre diferentes técnicas de realimentação de relevância; (ii) proposta de dois arcabouços para recuperação de imagens por conteúdo com realimentação de relevância baseado em programação genética; (iii) implementação dos métodos propostos, validando-os por meio de uma série de experimentos e comparações com outros métodos (AU)

Processo FAPESP: 05/58228-0 - Utilizacao de programacao genetica em recuperacao de imagens por con teudo em relevance feedback.
Beneficiário:Cristiano Dalmaschio Ferreira
Modalidade de apoio: Bolsas no Brasil - Mestrado