Busca avançada
Ano de início
Entree


Abordagem neurofuzzy para modelagem de sistemas dinamicos não lineares

Texto completo
Autor(es):
Michel Bortolini Hell
Número total de Autores: 1
Tipo de documento: Tese de Doutorado
Imprenta: Campinas, SP.
Instituição: Universidade Estadual de Campinas (UNICAMP). Faculdade de Engenharia Elétrica e de Computação
Data de defesa:
Membros da banca:
Fernando Antonio Campos Gomide; Walmir Matos Caminhas; Roseli Aparecida Francelin Romero; Rosangela Ballini; Romis Ribeiro de Faissol Attux
Orientador: Pyramo Pires da Costa Júnior; Fernando Antonio Campos Gomide
Resumo

Este trabalho propõe um procedimento sistemático para obtenção de modelos de sistemas dinâmicos não-lineares complexos utilizando redes neurais nebulosas. As redes neurais nebulosas aplicadas em modelagem são capazes de extrair conhecimento de dados entrada/saída e representar este conhecimento na forma de regras nebulosas do tipo se-então, gerando modelos lingüísticos convenientes para compreensão humana. Duas novas classes de redes neurais nebulosas são propostas a partir de generalizações dos neurônios lógicos AND e OR. Estas generalizações, denominadas unineurons e nullneurons, implementam, além da plasticidade sináptica, outra importante característica dos neurônios biológicos, a plasticidade neuronal. Desta forma, os neurônios propostos neste trabalho são capazes de modificar parâmetros internos em resposta à alterações, permitindo que unineurons e nullneurons variem individualmente de um neurônio AND para um neurônio OR (e vice-e-versa), dependendo da necessidade do problema. Conseqüentemente, uma rede neural nebulosa composta por unineurons e nullneurons é mais geral do que as redes neurais nebulosas similares sugeridas na literatura. Além da introdução de redes neurais com unineurons e nullneurons, um novo algoritmo de treinamento para obtenção de modelos nebulosos de sistemas dinâmicos é proposto utilizando aprendizado participativo. Neste algoritmo, uma nova informação fornecida à rede por meio de um dado entrada/saída é comparada com o conhecimento que já se tem a respeito do sistema. A nova informação só tem influência na atualização do conhecimento se não entrar em conflito com o conhecimento adquirido anteriormente. Como conseqüência, redes neurais nebulosas que utilizam este novo algoritmo de treinamento são mais robustas a dados de treinamento com valores que correspondem a comportamentos anômalos ou mesmo a erros durante a obtenção destes dados. As abordagens propostas foram utilizadas para desenvolver modelos para previsão de séries temporais e modelagem térmica de transformadores de potência. Os resultados experimentais mostram que os modelos aqui propostos são mais robustos e apresentam os melhores desempenhos, tanto em termos de precisão quanto em termos de custos computacionais, quando comparados com abordagens alternativas sugeridas na literatura (AU)

Processo FAPESP: 03/05042-1 - Abordagem neurofuzzy para modelagem de sistemas dinamicos nao lineares.
Beneficiário:Michel Bortolini Hell
Modalidade de apoio: Bolsas no Brasil - Doutorado