Busca avançada
Ano de início
Entree


Método de quantização para Redes Bayesianas e aprendizagem estrutural de Redes Bayesianas

Texto completo
Autor(es):
Rafael Rodrigues Mendes Ribeiro
Número total de Autores: 1
Tipo de documento: Tese de Doutorado
Imprenta: São Carlos.
Instituição: Universidade de São Paulo (USP). Escola de Engenharia de São Carlos (EESC/SBD)
Data de defesa:
Membros da banca:
Carlos Dias Maciel; Cassio Polpo de Campos; André Carlos Ponce de Leon Ferreira de Carvalho; Eduardo Antonio Barros da Silva; Ricardo Zorzetto Nicoliello Vencio
Orientador: Carlos Dias Maciel
Resumo

Redes Bayesianas (BNs) são modelos versáteis para capturar relações complexas e são amplamente aplicados em diversos campos. Este estudo concentra-se em BNs com variáveis discretas. A qualidade do modelamento depende do volume adequado de dados, especialmente para construir tabelas de probabilidade condicional (CPTs). A quantidade de dados necessários varia com o Grafo Direcionado Acíclico (DAG) escolhido para a BN. A aprendizagem estrutural da BN envolve um problema NP-difícil com um espaço de busca DAG superexponencial. Esta tese propõe investigar a otimização multiobjetivo na aprendizagem estrutural de BN (BNSL) para equilibrar critérios conflitantes. A abordagem utiliza conjuntos de Pareto e Algoritmos Genéticos (GAs) multiobjetivo. Para realizar a BNSL, desenvolveu-se um GA multiobjetivo adaptativo paralelo com ajuste automático de parâmetros, denominado Algoritmo Genético Adaptativo com Tamanho de População Variável (AGAVaPS). Esse algoritmo proposto é extensivamente testado em diversas aplicações e em BNSL, mostrando-se superior a HillClimbing e Tabu Search em algumas métricas utilizadas. O estudo também explora o impacto da quantização de dados no espaço de busca de BNSL. Introduz ainda um método de quantização chamado Quantização Baseada em Limite de CPT (CLBQ) que equilibra qualidade do modelo, fidelidade aos dados e pontuação da estrutura. A eficácia desse método é testada, demonstrando sua capacidade de ser usado na BNSL baseada em busca e pontuação. CLBQ obtém bons resultados, escolhendo quantizações com um bom erro médio quadrático e modelando bem as distribuições das variáveis. Além disso, CLBQ é adequado para uso em BNSL. (AU)

Processo FAPESP: 18/23139-8 - Aprendizagem estrutural de redes bayesianas dinâmicas utilizando algoritmo evolutivo paralelo multiobjetivo
Beneficiário:Rafael Rodrigues Mendes Ribeiro
Modalidade de apoio: Bolsas no Brasil - Doutorado Direto