Busca avançada
Ano de início
Entree


Orientações pfaffianas e o furtivo grafo de Heawood

Texto completo
Autor(es):
Alberto Alexandre Assis Miranda
Número total de Autores: 1
Tipo de documento: Dissertação de Mestrado
Imprenta: Campinas, SP.
Instituição: Universidade Estadual de Campinas (UNICAMP). Instituto de Computação
Data de defesa:
Membros da banca:
Cláudio Leonardo Lucchesi; Marcelo Henriques de Carvalho; Orlando Lee
Orientador: Cláudio Leonardo Lucchesi
Resumo

Um grafo G que tem emparelhamento perfeito é o Pfaffiano se existe uma orientação D das arestas de G, tal que todo circuito conforme de G tem orientação ímpar em D. Um subgrafo H de G é conforme se G- V (H) tem emparelhamento perfeito. Uma orientação de um circuito par é ímpar se numa dada direção de percurso do circuito o número de arestas que concorda com a direção é ímpar. Calcular o número de emparelhamentos perfeitos de um grafo, no caso geral, _e NP-difícil [11, pág. 307]. No entanto, para grafos Pfaffiano, seu cálculo torna-se polinomial [11, pág. 319]. A caracterização de grafos bipartidos Pfaffiano, feita por Little, tem quase trinta anos [9]. No entanto, somente nos últimos anos apareceram algoritmos polinomiais para reconhecimento de tais grafos, por McCuaig [13] e independentemente por Robertson, Seymour e Thomas [14]. A solução para este problema resolve também uma série de problemas, muitos deles clássicos, em teoria dos grafos, economia e química, como descrito no artigo de McCuaig [13, págs. 16 a 35]. Nesta dissertação, apresentamos uma prova de corretude do algoritmo distinta das duas provas anteriormente conhecidas (AU)

Processo FAPESP: 04/04589-0 - Grafos pfaffian - algoritmos.
Beneficiário:Alberto Alexandre Assis Miranda
Modalidade de apoio: Bolsas no Brasil - Mestrado