Busca avançada
Ano de início
Entree


Learning person-specific face representations

Texto completo
Autor(es):
Giovani Chiachia
Número total de Autores: 1
Tipo de documento: Tese de Doutorado
Imprenta: Campinas, SP.
Instituição: Universidade Estadual de Campinas (UNICAMP). Instituto de Computação
Data de defesa:
Membros da banca:
Alexandre Xavier Falcão; Walter Jerome Scheirer; Eduardo Valle; Zhao Liang; Hélio Pedrini
Orientador: Alexandre Xavier Falcão; Anderson de Rezende Rocha
Resumo

Os seres humanos são especialistas natos em reconhecimento de faces, com habilidades que excedem em muito as dos métodos automatizados vigentes, especialmente em cenários não controlados, onde não há a necessidade de colaboração por parte do indivíduo sendo reconhecido. No entanto, uma característica marcante do reconhecimento de face humano é que nós somos substancialmente melhores no reconhecimento de faces familiares, provavelmente porque somos capazes de consolidar uma grande quantidade de experiência prévia com a aparência de certo indivíduo e de fazer uso efetivo dessa experiência para nos ajudar no reconhecimento futuro. De fato, pesquisadores em psicologia têm até mesmo sugeridos que a representação interna que fazemos das faces pode ser parcialmente adaptada ou otimizada para rostos familiares. Enquanto isso, a situação análoga no reconhecimento facial automatizado | onde um grande número de exemplos de treinamento de um indivíduo está disponível | tem sido muito pouco explorada, apesar da crescente relevância dessa abordagem na era das mídias sociais. Inspirados nessas observações, nesta tese propomos uma abordagem em que a representação da face de cada pessoa é explicitamente adaptada e realçada com o intuito de reconhecê-la melhor. Apresentamos uma coleção de métodos de aprendizado que endereça e progressivamente justifica tal abordagem. Ao aprender e operar com representações específicas para face de cada pessoa, nós somos capazes de consistentemente melhorar o poder de reconhecimento dos nossos algoritmos. Em particular, nós obtemos resultados no estado da arte na base de dados PubFig83, uma desafiadora coleção de imagens instituída e tornada pública com o objetivo de promover o estudo do reconhecimento de faces familiares. Nós sugerimos que o aprendizado de representações específicas para face de cada pessoa introduz uma forma intermediária de regularização ao problema de aprendizado, permitindo que os classificadores generalizem melhor através do uso de menos |, porém mais relevantes | características faciais (AU)

Processo FAPESP: 10/00994-8 - Aprendendo Representações Específicas para a Face de cada Pessoa
Beneficiário:Giovani Chiachia
Modalidade de apoio: Bolsas no Brasil - Doutorado