Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Fast fault section estimation in distribution control centers using adaptive genetic algorithm

Texto completo
Autor(es):
Leao, Fabio Bertequini [1] ; Pereira, Rodrigo A. F. [1] ; Mantovani, Jose R. S. [1]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Sao Paulo State Univ UNESP, Dept Elect Engn, Res Grp Elect Power Syst Planning, BR-15385000 Ilha Solteira - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS; v. 63, p. 787-805, DEC 2014.
Citações Web of Science: 7
Resumo

This paper presents a novel mathematical model for fast fault section estimation in a Distribution Control Center (DCC). The mathematical model is divided into two parts, namely: (1) a protection system operations model based on operator's heuristic knowledge of the protection system performance and (2) an optimization Unconstrained Binary Programming (UBP) model based on parsimonious covering theory. In order to solve the UBP model, an Adaptive Genetic Algorithm (AGA) using crossing over and mutation rates that are automatically tuned in each generation is proposed. An Alarm Probabilistic Generator Algorithm (APGA) is developed and a real four-interconnected distribution substation system is used to test exhaustively the approach. Results show that the proposed methodology is capable of performing fault section estimation in a very fast and reliable manner. Furthermore, the proposed methodology is a powerful real-time fault diagnosis tool for application in future Distribution Control Centers. (C) 2014 Elsevier Ltd. All rights reserved. (AU)

Processo FAPESP: 06/02569-7 - Ferramenta computacional inteligente para análise e interpretação de alarmes em tempo real em subestações de distribuição de energia elétrica
Beneficiário:Fabio Bertequini Leao
Modalidade de apoio: Bolsas no Brasil - Doutorado Direto