Texto completo | |
Autor(es): |
Zhuravlev, Viacheslav V.
[1]
;
Ivanov, Pavel B.
[2]
;
Fragile, P. Chris
[3]
;
Teixeira, Danilo Morales
[4]
Número total de Autores: 4
|
Afiliação do(s) autor(es): | [1] Moscow MV Lomonosov State Univ, Sternberg Astron Inst, Moscow 119992 - Russia
[2] PN Lebedev Phys Inst, Ctr Astro Space, Moscow 117810 - Russia
[3] Coll Charleston, Dept Phys & Astron, Charleston, SC 29424 - USA
[4] Univ Sao Paulo, Inst Astron Geofis & Ciencias Atmosfer, BR-05508090 Sao Paulo - Brazil
Número total de Afiliações: 4
|
Tipo de documento: | Artigo Científico |
Fonte: | ASTROPHYSICAL JOURNAL; v. 796, n. 2 DEC 1 2014. |
Citações Web of Science: | 19 |
Resumo | |
In this paper, we introduce the first results that use data extracted directly from numerical simulations as inputs to the analytic twisted disk model of Zhuravlev \& Ivanov. In both numerical and analytic approaches, fully relativistic models of tilted and twisted disks having a moderate effective viscosity around a slowly rotating Kerr black hole are considered. Qualitatively, the analytic model demonstrates the same dynamics as the simulations, although with some quantitative offset. Namely, the general relativistic magnetohydrodynamic simulations typically give smaller variations of tilt and twist across the disk. When the black hole and the disk rotate in the same direction, the simulated tilted disk and analytic model show no sign of Bardeen-Petterson alignment, even in the innermost parts of the disk where the characteristic time for relaxation to a quasi-stationary configuration is of the same order as the computation time. In the opposite case, when the direction of the disk's rotation is opposite to that of the black hole, a partial alignment is observed, in agreement with previous theoretical estimates. Thus, both fully numerical and analytic schemes demonstrate that the Bardeen-Petterson effect may not be possible for the case of prograde rotation provided that disk's effective viscosity is sufficiently small. This may have implications in modeling of different astrophysical phenomena such as disk spectra and jet orientation. (AU) | |
Processo FAPESP: | 09/54006-4 - Um cluster de computadores para o Departamento de Astronomia do IAG-USP e para o Núcleo de Astrofísica da UNICSUL |
Beneficiário: | Elisabete Maria de Gouveia Dal Pino |
Modalidade de apoio: | Auxílio à Pesquisa - Programa Equipamentos Multiusuários |