Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Evolutionary Design of Decision-Tree Algorithms Tailored to Microarray Gene Expression Data Sets

Texto completo
Autor(es):
Barros, Rodrigo C. [1] ; Basgalupp, Marcio P. [2] ; Freitas, Alex A. [3] ; de Carvalho, Andre C. P. L. F. [4]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Pontificia Univ Catolica Rio Grande do Sul, Fac Informat, BR-90619900 Porto Alegre, RS - Brazil
[2] Univ Fed Sao Paulo, Inst Ciencia & Tecnol, BR-12231280 Sao Jose Dos Campos - Brazil
[3] Univ Kent, Dept Comp Sci, Canterbury CT2 7NF, Kent - England
[4] Univ Sao Paulo, Dept Comp Sci, BR-13566590 Sao Carlos, SP - Brazil
Número total de Afiliações: 4
Tipo de documento: Artigo Científico
Fonte: IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION; v. 18, n. 6, p. 873-892, DEC 2014.
Citações Web of Science: 18
Resumo

Decision-tree induction algorithms are widely used in machine learning applications in which the goal is to extract knowledge from data and present it in a graphically intuitive way. The most successful strategy for inducing decision trees is the greedy top-down recursive approach, which has been continuously improved by researchers over the past 40 years. In this paper, we propose a paradigm shift in the research of decision trees: instead of proposing a new manually designed method for inducing decision trees, we propose automatically designing decision-tree induction algorithms tailored to a specific type of classification data set (or application domain). Following recent breakthroughs in the automatic design of machine learning algorithms, we propose a hyper-heuristic evolutionary algorithm called hyper-heuristic evolutionary algorithm for designing decision-tree algorithms (HEAD-DT) that evolves design components of top-down decision-tree induction algorithms. By the end of the evolution, we expect HEAD-DT to generate a new and possibly better decision-tree algorithm for a given application domain. We perform extensive experiments in 35 real-world microarray gene expression data sets to assess the performance of HEAD-DT, and compare it with very well known decision-tree algorithms such as C4.5, CART, and REPTree. Results show that HEAD-DT is capable of generating algorithms that significantly outperform the baseline manually designed decision-tree algorithms regarding predictive accuracy and F-measure. (AU)

Processo FAPESP: 09/14325-3 - Um meta-learner para indução de árvores-modelo por meio de Programação Genética
Beneficiário:Rodrigo Coelho Barros
Modalidade de apoio: Bolsas no Brasil - Doutorado