Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

A semi-analytical solver for the Grad-Shafranov equation

Texto completo
Autor(es):
Ciro, D. [1] ; Caldas, I. L. [1]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Dept Fis Aplicada, BR-05508090 Sao Paulo - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: Physics of Plasmas; v. 21, n. 11 NOV 2014.
Citações Web of Science: 3
Resumo

In toroidally confined plasmas, the Grad-Shafranov equation, in general, a non-linear partial differential equation, describes the hydromagnetic equilibrium of the system. This equation becomes linear when the kinetic pressure is proportional to the poloidal magnetic flux and the squared poloidal current is a quadratic function of it. In this work, the eigenvalue of the associated homogeneous equation is related with the safety factor on the magnetic axis, the plasma beta, and the Shafranov shift; then, the adjustable parameters of the particular solution are bounded through physical constrains. The poloidal magnetic flux becomes a linear superposition of independent solutions and its parameters are adjusted with a non-linear fitting algorithm. This method is used to find hydromagnetic equilibria with normal and reversed magnetic shear and defined values of the elongation, triangularity, aspect-ratio, and X-point(s). The resultant toroidal and poloidal beta, the safety factor at the 95% flux surface, and the plasma current are in agreement with usual experimental values for high beta discharges and the model can be used locally to describe reversed magnetic shear equilibria. (C) 2014 AIP Publishing LLC. (AU)

Processo FAPESP: 12/18073-1 - Transporte simplético em plasmas de fusão com divertor
Beneficiário:David Ciro Taborda
Modalidade de apoio: Bolsas no Brasil - Doutorado