Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

The inverse problem of Lagrangian mechanics for a non-material volume

Texto completo
Autor(es):
Casetta, Leonardo [1]
Número total de Autores: 1
Afiliação do(s) autor(es):
[1] Johannes Kepler Univ Linz, Inst Tech Mech, A-4040 Linz - Austria
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: ACTA MECHANICA; v. 226, n. 1, p. 1-15, JAN 2015.
Citações Web of Science: 15
Resumo

The appropriate consideration of non-material volumes at the level of analytical mechanics is an ongoing research field. In the present paper, we aim at demonstrating the principle of stationary action that is able to yield the proper form of Lagrange's equation in the context, namely the Lagrange's equation in the form derived by Irschik and Holl (Acta Mech 153(3-4):231-248, 2002). Such issue will here be interpreted as being the inverse problem of Lagrangian mechanics for a non-material volume. The classical method of Darboux (Le double dagger ons sur la Th,orie G,n,rale des Surfaces. Gauthier-Villars, Paris, 1891) will be used as the solution technique. This means that our discussion will be restricted to the case of a single degree of freedom. Having such principle of stationary action at hand, the corresponding Hamiltonian formalism will be written in accordance with the classical theory. Furthermore, a conservation law will be demonstrated for the time-independent case. At last, two simple examples will be addressed in order to illustrate the applicability of the proposed formulation. The reader may find some mathematical analogies between the upcoming content and that discussed by Casetta and Pesce (Acta Mech, 2013. doi:10.1007/s00707-013-1004-1) in considering the inverse problem of Lagrangian mechanics for Meshchersky's equation. The mathematical formulation which will be outlined in the present paper is thus expected to consistently situate non-material volumes within the classical variational approach of mechanics. (AU)

Processo FAPESP: 12/10848-4 - Estudos Avançados em mecânica de sistemas de massa variável
Beneficiário:Leonardo Casetta
Linha de fomento: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 13/02997-2 - Formalismo lagrangeano e Hamiltoniano para volumes não-materiais
Beneficiário:Leonardo Casetta
Linha de fomento: Bolsas no Exterior - Estágio de Pesquisa - Pós-Doutorado