Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Saccharomyces cerevisiae transcriptional reprograming due to bacterial contamination during industrial scale bioethanol production

Texto completo
Autor(es):
Carvalho-Netto, Osmar V. [1, 2] ; Carazzolle, Marcelo F. [2] ; Mofatto, Luciana S. [2] ; Teixeira, Paulo J. P. L. [2] ; Noronha, Melline F. [2] ; Calderon, Luige A. L. [2] ; Mieczkowski, Piotr A. [3] ; Argueso, Juan Lucas [1] ; Pereira, Goncalo A. G. [2]
Número total de Autores: 9
Afiliação do(s) autor(es):
[1] Colorado State Univ, Dept Environm & Radiol Hlth Sci, Ft Collins, CO 80523 - USA
[2] Univ Estadual Campinas, Inst Biol, Dept Genet Evolucao Bioagentes, Campinas, SP - Brazil
[3] Univ N Carolina, Dept Genet, Chapel Hill, NC - USA
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: Microbial Cell Factories; v. 14, JAN 30 2015.
Citações Web of Science: 25
Resumo

Background: The bioethanol production system used in Brazil is based on the fermentation of sucrose from sugarcane feedstock by highly adapted strains of the yeast Saccharomyces cerevisiae. Bacterial contaminants present in the distillery environment often produce yeast-bacteria cellular co-aggregation particles that resemble yeast-yeast cell adhesion (flocculation). The formation of such particles is undesirable because it slows the fermentation kinetics and reduces the overall bioethanol yield. Results: In this study, we investigated the molecular physiology of one of the main S. cerevisiae strains used in Brazilian bioethanol production, PE-2, under two contrasting conditions: typical fermentation, when most yeast cells are in suspension, and co-aggregated fermentation. The transcriptional profile of PE-2 was assessed by RNA-seq during industrial scale fed-batch fermentation. Comparative analysis between the two conditions revealed transcriptional profiles that were differentiated primarily by a deep gene repression in the co-aggregated samples. The data also indicated that Lactobacillus fermentum was likely the main bacterial species responsible for cellular co-aggregation and for the high levels of organic acids detected in the samples. Conclusions: Here, we report the high-resolution gene expression profiling of strain PE-2 during industrial-scale fermentations and the transcriptional reprograming observed under co-aggregation conditions. This dataset constitutes an important resource that can provide support for further development of this key yeast biocatalyst. (AU)

Processo FAPESP: 08/51500-5 - Fisiologia da fermentacao alcoolica: analise da expressao genica de linhagens industriais de saccharomyces cerevisiae durante o processo fermentativo.
Beneficiário:Osmar Vaz de Carvalho Netto
Modalidade de apoio: Bolsas no Brasil - Doutorado