Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Quantum-dot-in-perovskite solids

Texto completo
Autor(es):
Ning, Zhijun [1] ; Gong, Xiwen [1] ; Comin, Riccardo [1] ; Walters, Grant [1] ; Fan, Fengjia [1] ; Voznyy, Oleksandr [1] ; Yassitepe, Emre [1] ; Buin, Andrei [1] ; Hoogland, Sjoerd [1] ; Sargent, Edward H. [1]
Número total de Autores: 10
Afiliação do(s) autor(es):
[1] Univ Toronto, Dept Elect & Comp Engn, Toronto, ON M5S 1A4 - Canada
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: Nature; v. 523, n. 7560, p. 324+, JUL 16 2015.
Citações Web of Science: 174
Resumo

Heteroepitaxy-atomically aligned growth of a crystalline film atop a different crystalline substrate-is the basis of electrically driven lasers, multijunction solar cells, and blue-light-emitting diodes(1-5). Crystalline coherence is preserved even when atomic identity is modulated, a fact that is the critical enabler of quantum wells, wires, and dots(6-10). The interfacial quality achieved as a result of hetero-epitaxial growth allows new combinations of materials with complementary properties, which enables the design and realization of functionalities that are not available in the single-phase constituents. Here we show that organohalide perovskites and preformed colloidal quantum dots, combined in the solution phase, produce epitaxially aligned `dots-in-a-matrix' crystals. Using transmission electron microscopy and electron diffraction, we reveal heterocrystals as large as about 60 nanometres and containing at least 20 mutually aligned dots that inherit the crystalline orientation of the perovskite matrix. The heterocrystals exhibit remarkable optoelectronic properties that are traceable to their atom-scale crystalline coherence: photoelectrons and holes generated in the larger-bandgap perovskites are transferred with 80% efficiency to become excitons in the quantum dot nanocrystals, which exploit the excellent photocarrier diffusion of perovskites to produce bright-light emission from infrared-bandgap quantum-tuned materials. By combining the electrical transport properties of the perovskite matrix with the high radiative efficiency of the quantum dots, we engineer a new platform to advance solution-processed infrared optoelectronics. (AU)

Processo FAPESP: 14/18327-9 - Quantum dots coloidais com defeitos superficiais passivados para aplicações em células solares de filmes finos de heterojunção P-N
Beneficiário:Emre Yassitepe
Linha de fomento: Bolsas no Exterior - Estágio de Pesquisa - Pós-Doutorado