Texto completo | |
Autor(es): |
Número total de Autores: 2
|
Afiliação do(s) autor(es): | [1] Univ Fed Sao Carlos, Dept Matemat, BR-13560 Sao Carlos, SP - Brazil
[2] Univ Fed Sao Paulo, Inst Ciencia & Tecnol, BR-12231280 Sao Jose Dos Campos - Brazil
Número total de Afiliações: 2
|
Tipo de documento: | Artigo Científico |
Fonte: | COMMUNICATIONS IN ALGEBRA; v. 43, n. 12, p. 5217-5235, 2015. |
Citações Web of Science: | 0 |
Resumo | |
Let K be a field of characteristic zero and let R-5 be the variety of associative algebras over K, defined by the identity {[}x(1), x(2)]{[}x(3), x(4), x(5)]. It is well-known that such variety is a minimal variety and that it is generated by the algebra Lambda = {[}GRAPHICS] where E = E-0 circle plus E-1 is the Grassmann algebra. In this article, for any positive integer k, we describe the polynomial identities of the relatively free algebras of rank k of R-5, F-k(R-5) = K < x(1), ..., x(k)> /K < x(1), ..., x(k)> boolean AND T(R-5) It turns out that such algebras satisfy the same polynomial identities of some algebras used in the description of the subvarieties of R-5, given by Di Vincenzo, Drensky, and Nardozza. (AU) | |
Processo FAPESP: | 12/16838-0 - Superposto básico e subvariedades de álgebras T-primas. |
Beneficiário: | Thiago Castilho de Mello |
Modalidade de apoio: | Bolsas no Brasil - Pós-Doutorado |