Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Bayesian recursive data-pattern tomography

Texto completo
Autor(es):
Mikhalychev, Alexander [1] ; Mogilevtsev, Dmitri [2, 1] ; Teo, Yong Siah [3] ; Rehacek, Jaroslav [3] ; Hradil, Zdenek [3]
Número total de Autores: 5
Afiliação do(s) autor(es):
[1] Belarus Natl Acad Sci, Inst Phys, Minsk 220072 - Byelarus
[2] Univ Fed ABC, Ctr Ciencias Nat & Humanas, BR-09210170 Santo Andre, SP - Brazil
[3] Palacky Univ, Dept Opt, Olomouc 77146 - Czech Republic
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: Physical Review A; v. 92, n. 5 NOV 11 2015.
Citações Web of Science: 4
Resumo

We present a simple and efficient Bayesian recursive algorithm for the data-pattern scheme for quantum state reconstruction, which is applicable to situations where measurement settings can be controllably varied efficiently. The algorithm predicts the best measurements required to accurately reconstruct the unknown signal state in terms of a fixed set of probe states. In each iterative step, this algorithm seeks the measurement setting that minimizes the variance of the data-pattern estimator, which essentially measures the reconstruction accuracy, with the help of a data-pattern bank that was acquired prior to the signal reconstruction. We show that, with this algorithm, it is possible to minimize the number of measurement settings required to obtain a reasonably accurate state estimator by using just the optimal settings and, at the same time, increasing the numerical efficiency of the data-pattern reconstruction. (AU)

Processo FAPESP: 14/21188-0 - Dinamica quântica de sistemas com acoplamento dissipativo
Beneficiário:Valery Shchesnovich
Modalidade de apoio: Auxílio à Pesquisa - Pesquisador Visitante - Internacional