Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

A model of gene expression based on random dynamical systems reveals modularity properties of gene regulatory networks

Texto completo
Autor(es):
Antoneli, Fernando [1] ; Ferreira, Renata C. [2] ; Briones, Marcelo R. S. [3, 4]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Fed Sao Paulo UNIFESP, Escola Paulista Med EPM, Dept Informat Saude, Sao Paulo, SP - Brazil
[2] Penn State Univ, Coll Med, Hershey, PA - USA
[3] Univ Fed Sao Paulo UNIFESP, Escola Paulista Med EPM, Dept Microbiol Imunol & Parasitol, Sao Carlos, SP - Brazil
[4] Univ Fed Sao Paulo, Lab Genom Evolut & Biocomplexidade, EPM, Ed Pesquisas 2, Rua Pedro Toledo 669, BR-04039032 Sao Paulo - Brazil
Número total de Afiliações: 4
Tipo de documento: Artigo Científico
Fonte: MATHEMATICAL BIOSCIENCES; v. 276, p. 82-100, JUN 2016.
Citações Web of Science: 3
Resumo

Here we propose a new approach to modeling gene expression based on the theory of random dynamical systems (RDS) that provides a general coupling prescription between the nodes of any given regulatory network given the dynamics of each node is modeled by a RDS. The main virtues of this approach are the following: (i) it provides a natural way to obtain arbitrarily large networks by coupling together simple basic pieces, thus revealing the modularity of regulatory networks; (ii) the assumptions about the stochastic processes used in the modeling are fairly general, in the sense that the only requirement is stationarity; (iii) there is a well developed mathematical theory, which is a blend of smooth dynamical systems theory, ergodic theory and stochastic analysis that allows one to extract relevant dynamical and statistical information without solving the system; (iv) one may obtain the classical rate equations form the corresponding stochastic version by averaging the dynamic random variables (small noise limit). It is important to emphasize that unlike the deterministic case, where coupling two equations is a trivial matter, coupling two RDS is non-trivial, specially in our case, where the coupling is performed between a state variable of one gene and the switching stochastic process of another gene and, hence, it is not a priori true that the resulting coupled system will satisfy the definition of a random dynamical system. We shall provide the necessary arguments that ensure that our coupling prescription does indeed furnish a coupled regulatory network of random dynamical systems. Finally, the fact that classical rate equations are the small noise limit of our stochastic model ensures that any validation or prediction made on the basis of the classical theory is also a validation or prediction of our model. We illustrate our framework with some simple examples of single-gene system and network motifs. (C) 2016 Elsevier Inc. All rights reserved. (AU)

Processo FAPESP: 13/07838-0 - Microdiversidade mitocondrial de Candida albicans e suas implicações em infecção hospitalar e em padrões macroevolutivos do genoma mitocondrial
Beneficiário:Marcelo Ribeiro da Silva Briones
Linha de fomento: Auxílio à Pesquisa - Regular
Processo FAPESP: 08/04531-2 - Propriedades dinâmicas de modelos multi-genes aplicados à rede regulatória de Saccharomyces cerevisiae
Beneficiário:Francisco de Assis Ribas Bosco
Linha de fomento: Auxílio à Pesquisa - Regular