Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Lyapunov exponents and adaptive mesh refinement for high-speed flows using a discontinuous Galerkin scheme

Texto completo
Autor(es):
Moura, R. C. [1] ; Silva, A. F. C. [1] ; Bigarella, E. D. V. [2] ; Fazenda, A. L. [3] ; Ortega, M. A. [1]
Número total de Autores: 5
Afiliação do(s) autor(es):
[1] ITA, Sao Jose Dos Campos, SP - Brazil
[2] EMBRAER, Commercial Aviat, Sao Jose Dos Campos, SP - Brazil
[3] UNIFESP, Sao Jose Dos Campos, SP - Brazil
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: Journal of Computational Physics; v. 319, p. 9-27, AUG 15 2016.
Citações Web of Science: 2
Resumo

This paper proposes two important improvements to shock-capturing strategies using a discontinuous Galerkin scheme, namely, accurate shock identification via finite-time Lyapunov exponent (FTLE) operators and efficient shock treatment through a point-implicit discretization of a PDE-based artificial viscosity technique. The advocated approach is based on the FTLE operator, originally developed in the context of dynamical systems theory to identify certain types of coherent structures in a flow. We propose the application of FTLEs in the detection of shock waves and demonstrate the operator's ability to identify strong and weak shocks equally well. The detection algorithm is coupled with a mesh refinement procedure and applied to transonic and supersonic flows. While the proposed strategy can be used potentially with any numerical method, a high-order discontinuous Galerkin solver is used in this study. In this context, two artificial viscosity approaches are employed to regularize the solution near shocks: an element-wise constant viscosity technique and a PDE-based smooth viscosity model. As the latter approach is more sophisticated and preferable for complex problems, a point-implicit discretization in time is proposed to reduce the extra stiffness introduced by the PDE-based technique, making it more competitive in terms of computational cost. (C) 2016 Elsevier Inc. All rights reserved. (AU)

Processo FAPESP: 12/16973-5 - Soluções numéricas de problemas complexos de dinâmica dos fluidos por meio de técnicas espectrais tipo Galerkin Descontínuo
Beneficiário:Marcos Aurélio Ortega
Modalidade de apoio: Auxílio à Pesquisa - Regular