Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

A note on graded polynomial identities for tensor products by the Grassmann algebra in positive characteristic

Texto completo
Autor(es):
Centrone, Lucio ; Tomaz da Silva, Viviane Ribeiro
Número total de Autores: 2
Tipo de documento: Artigo Científico
Fonte: INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION; v. 26, n. 6, p. 1125-1140, SEP 2016.
Citações Web of Science: 0
Resumo

Let G be a finite abelian group. As a consequence of the results of Di Vincenzo and Nardozza, we have that the generators of the T-G-ideal of G-graded identities of a G-graded algebra in characteristic 0 and the generators of the T-GxZ2 -ideal of G x Z(2)-graded identities of its tensor product by the infinite-dimensional Grassmann algebra E endowed with the canonical grading have pairly the same degree. In this paper, we deal with Z(2) x Z(2)-graded identities of E-k{*} circle times E over an infinite field of characteristic p > 2, where E-k{*} is E endowed with a specific Z(2)-grading. We find identities of degree p + 1 and p + 2 while the maximal degree of a generator of the Z(2)-graded identities of E-k{*} is p if p > k. Moreover, we find a basis of the Z(2) x Z(2)-graded identities of E-k ({*}) circle times E and also a basis of multihomogeneous polynomials for the relatively free algebra. Finally, we compute the Z(2) x Z(2)-graded Gelfand-Kirillov (GK) dimension of E-k{*} circle times E. (AU)

Processo FAPESP: 15/08961-5 - Crescimento de álgebras com identidades polinomiais
Beneficiário:Lucio Centrone
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 13/06752-4 - Cocaracteres e dimenção de Gelfand-Kirillov de PI-álgebras
Beneficiário:Lucio Centrone
Modalidade de apoio: Auxílio à Pesquisa - Regular