Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Improving semi-supervised learning through optimum connectivity

Texto completo
Autor(es):
Amorim, Willian P. ; Falcao, Alexandre X. ; Papa, Joao P. ; Carvalho, Marcelo H.
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: PATTERN RECOGNITION; v. 60, p. 72-85, DEC 2016.
Citações Web of Science: 12
Resumo

The annotation of large data sets by a classifier is a problem whose challenge increases as the number of labeled samples used to train the classifier reduces in comparison to the number of unlabeled samples. In this context, semi-supervised learning methods aim at discovering and labeling informative samples among the unlabeled ones, such that their addition to the correct class in the training set can improve classification performance. We present a semi-supervised learning approach that connects unlabeled and labeled samples as nodes of a minimum-spanning tree and partitions the tree into an optimum-path forest rooted at the labeled nodes. It is suitable when most samples from a same class are more closely connected through sequences of nearby samples than samples from distinct classes, which is usually the case in data sets with a reasonable relation between number of samples and feature space dimension. The proposed solution is validated by using several data sets and state-of-the-art methods as baselines. (C) 2016 Elsevier Ltd. All rights reserved. (AU)

Processo FAPESP: 14/16250-9 - Sobre a otimização de parâmetros em técnicas de aprendizado de máquina: avanços e paradigmas
Beneficiário:João Paulo Papa
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 13/20387-7 - Otimização de hiperparâmetros em arquiteturas de aprendizado em profundidade
Beneficiário:João Paulo Papa
Modalidade de apoio: Bolsas no Exterior - Pesquisa