Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Cooperative parallel particle filters for online model selection and applications to urban mobility

Texto completo
Autor(es):
Martino, Luca ; Read, Jesse ; Elvira, Victor ; Louzada, Francisco
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: DIGITAL SIGNAL PROCESSING; v. 60, p. 172-185, JAN 2017.
Citações Web of Science: 41
Resumo

We design a sequential Monte Carlo scheme for the dual purpose of Bayesian inference and model selection. We consider the application context of urban mobility, where several modalities of transport and different measurement devices can be employed. Therefore, we address the joint problem of online tracking and detection of the current modality. For this purpose, we use interacting parallel particle filters, each one addressing a different model. They cooperate for providing a global estimator of the variable of interest and, at the same time, an approximation of the posterior density of each model given the data. The interaction occurs by a parsimonious distribution of the computational effort, with online adaptation for the number of particles of each filter according to the posterior probability of the corresponding model. The resulting scheme is simple and flexible. We have tested the novel technique in different numerical experiments with artificial and real data, which confirm the robustness of the proposed scheme. (C) 2016 Elsevier Inc. All rights reserved. (AU)

Processo FAPESP: 14/23160-6 - Esquemas eficientes de Monte Carlo para espaços de alta dimensão e grandes bancos de dados médicos e industriais
Beneficiário:Luca Martino
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado