Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

On the validity of the integral localized approximation for Bessel beams and associated radiation pressure forces

Texto completo
Autor(es):
Ambrosio, Leonardo A. ; Wang, Jiajie ; Gouesbet, Gerard
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: APPLIED OPTICS; v. 56, n. 19, p. 5377-5387, JUL 1 2017.
Citações Web of Science: 10
Resumo

In this paper we investigate the integral version of the localized approximation (ILA)-a powerful technique for evaluating the beam shape coefficients in the framework of the generalized Lorenz-Mie theory-as applied to ideal scalar Bessel beams (BBs). Originally conceived for arbitrary shaped beams with a propagating factor exp (+/- ikz), it has recently been shown that care must be taken when applying the ILA for the case of ideal scalar BBs, since they carry a propagating factor exp (+/- ikz cos alpha), with a being the axicon angle, which cannot be smoothly accommodated into its mathematical formalism. Comparisons are established between the beam shape coefficients calculated from both ILA and exact approaches, assuming paraxial approximation and both on-and off-axis beams. Particular simulations of radiation pressure forces are provided based on the existing data in the literature. This work helps us in elucidating that ILA provides adequate beam shape coefficients and descriptions of ideal scalar BBs up to certain limits and, even when it fails to do so, reliable information on the physical optical properties of interest can still be inferred, depending on specific geometric and electromagnetic aspects of the scatterer. (C) 2017 Optical Society of America (AU)

Processo FAPESP: 14/04867-1 - Ondas não-difrativas, frozen waves e feixes resistentes à atenuação e à difração para aplicações milimétricas e micrométricas
Beneficiário:Leonardo Andre Ambrosio
Linha de fomento: Auxílio à Pesquisa - Regular
Processo FAPESP: 16/11174-8 - Descrições eficientes de superposições discretas de feixes de Bessel escalares (Frozen Waves) na teoria generalizada de Lorenz-Mie para aplicações em aprisionamento óptico
Beneficiário:Leonardo Andre Ambrosio
Linha de fomento: Bolsas no Exterior - Pesquisa