Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Pruning optimum-path forest ensembles using metaheuristic optimization for land-cover classification

Texto completo
Autor(es):
Nachif Fernandes, Silas Evandro ; de Souza, Andre Nunes ; Gastaldello, Danilo Sinkiti ; Pereira, Danillo Roberto ; Papa, Joao Paulo
Número total de Autores: 5
Tipo de documento: Artigo Científico
Fonte: International Journal of Remote Sensing; v. 38, n. 20, p. 5736-5762, 2017.
Citações Web of Science: 2
Resumo

Machine learning techniques have been actively pursued in the last years, mainly due to the increasing number of applications that make use of some sort of intelligent mechanism for decision-making processes. In this context, we shall highlight ensemble pruning strategies, which provide heuristics to select from a collection of classifiers the ones that can really improve recognition rates and provide efficiency by reducing the ensemble size prior to combining the model. In this article, we present and validate an ensemble pruning approach for Optimum-Path Forest (OPF) classifiers based on metaheuristic optimization over general-purpose data sets to validate the effectiveness and efficiency of the proposed approach using distinct configurations in real and synthetic benchmark data sets, and thereafter, we apply the proposed approach in remote-sensing images to investigate the behaviour of theOPF classifier using pruning strategies. The image data sets were obtained from CBERS-2B, LANDSAT-5 TM, IKONOS-2 MS, and GEOEYE sensors, covering some areas of Brazil. The well-known Indian Pines data set was also used. In this work, we evaluate five different optimization algorithms for ensemble pruning, including that Particle Swarm Optimization, Harmony Search, Cuckoo Search, and Firefly Algorithm. In addition, we performed an empirical comparison between Support Vector Machine and OPF using the strategy of ensemble pruning. Experimental results showed the effectiveness and efficiency of ensemble pruning using OPF-based classification, especially concerning ensemble pruning using Harmony Search, which shows to be effective without degrading the performance when applied to large data sets, as well as a good data generalization. (AU)

Processo FAPESP: 14/16250-9 - Sobre a otimização de parâmetros em técnicas de aprendizado de máquina: avanços e paradigmas
Beneficiário:João Paulo Papa
Linha de fomento: Auxílio à Pesquisa - Regular
Processo FAPESP: 14/12236-1 - AnImaLS: Anotação de Imagem em Larga Escala: o que máquinas e especialistas podem aprender interagindo?
Beneficiário:Alexandre Xavier Falcão
Linha de fomento: Auxílio à Pesquisa - Temático