Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Forbidden Pairs and the Existence of a Spanning Halin Subgraph

Texto completo
Autor(es):
Chen, Guantao [1, 2] ; Han, Jie [3] ; Suil, O. [4] ; Shan, Songling [5] ; Tsuchiya, Shoichi [6]
Número total de Autores: 5
Afiliação do(s) autor(es):
[1] Georgia State Univ, Dept Math & Stat, Atlanta, GA 30303 - USA
[2] Cent China Normal Univ, Fac Math & Stat, Wuhan, Hubei - Peoples R China
[3] Univ Sao Paulo, Inst Matemat & Estat, Rua Matao 1010, BR-05508090 Sao Paulo - Brazil
[4] SUNY, Dept Appl Math & Stat, Incheon 21985 - South Korea
[5] Vanderbilt Univ, Dept Math, Nashville, TN 37240 - USA
[6] Senshu Univ, Sch Network & Informat, Tama Ku, 2-1-1 Higashimita, Kawasaki, Kanagawa 2148580 - Japan
Número total de Afiliações: 6
Tipo de documento: Artigo Científico
Fonte: GRAPHS AND COMBINATORICS; v. 33, n. 5, p. 1321-1345, SEP 2017.
Citações Web of Science: 1
Resumo

A Halin graph is constructed from a plane embedding of a tree with no vertices of degree 2 by adding a cycle through its leaves in the natural order determined by the embedding. Halin graphs satisfy interesting properties. However, to our knowledge, there are no results giving a positive answer for ``spanning Halin subgraph problem{''} (i.e., which graph has a Halin graph as a spanning subgraph) except for a conjecture by Lovasz and Plummer which states that every 4-connected plane triangulation contains a spanning Halin subgraph. In this paper, we investigate the characterization of forbidden pairs guaranteeing the existence of a spanning Halin subgraph. In particular, we show that the set of such pairs is a very small class. Also, we show that belongs to the set, but neither nor belongs to the set. (AU)

Processo FAPESP: 14/18641-5 - Circuitos hamiltonianos e problemas de ladrilhamento em hipergrafos
Beneficiário:Jie Han
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 15/07869-8 - Emparelhamento perfeitos e ladrilhamentos em hipergrafos
Beneficiário:Jie Han
Modalidade de apoio: Bolsas no Exterior - Estágio de Pesquisa - Pós-Doutorado