Nonlinear Frequency-Domain Analysis of the Transfo... - BV FAPESP
Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Nonlinear Frequency-Domain Analysis of the Transformation of Cortical Inputs by a Motoneuron Pool-Muscle Complex

Texto completo
Autor(es):
Watanabe, Renato Naville [1, 2] ; Kohn, Andre Fabio [1]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Biomed Engn Lab, Escola Politecn, BR-05508010 Sao Paulo - Brazil
[2] Fed Univ ABC, Biomed Engn Program, BR-09606045 Sao Bernardo Do Campo, SP - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING; v. 25, n. 11, p. 1930-1939, NOV 2017.
Citações Web of Science: 1
Resumo

Corticomotor coherence in the beta and/or gamma bands has been described in different motor tasks, but the role of descendingbrain oscillationson force control has been elusive. Large-scale computational models of a motoneuron pool and the muscle it innervates have been used as tools to advance the knowledge of how neural elements may influence force control. Here, we present a frequency domain analysis of a NARX model fitted to a large-scale neuromuscular model by the means of generalized frequency response functions (GFRF). The results of such procedures indicated that the computational neuromuscular-model was capable of transforming an oscillatory synaptic input (e.g., at 20 Hz) into a constant mean muscle force output. The nonlinearity uncovered by the GFRFs of the NARX model was responsible for the demodulation of an oscillatory input (e.g., a beta band oscillation coming from the brain and forming the input to the motoneuron pool). This suggests a manner by which brain rhythms descending as command signals to the spinal cord and acting on a motoneuron pool can regulate a maintained muscle force. In addition to the scientific aspects of these results, they provide new interpretations that may further neural engineering applications associated with quantitative neurological diagnoses and robotic systems for artificial limbs. (AU)

Processo FAPESP: 15/21819-3 - O uso de um modelo computacional biologicamente realista do sistema neuromuscular para o estudo de doenças neurodegenerativas
Beneficiário:Renato Naville Watanabe
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 11/17193-0 - Respostas reflexas, encefálicas e comportamentais a estímulos mecânicos e elétricos no estudo da propriocepção e da medula espinhal em seres humanos
Beneficiário:André Fábio Kohn
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 11/21103-7 - Identificação de modelo para um estudo de controle postural humano
Beneficiário:Renato Naville Watanabe
Modalidade de apoio: Bolsas no Brasil - Doutorado