Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Discrimination of benign-versus-malignant skin lesions by thermographic images using support vector machine classifier

Texto completo
Autor(es):
Stringasci, Mirian Denise [1] ; Salvio, Ana Gabriela [2] ; Sbrissa Neto, David [1, 3] ; Vollet-Filho, Jose Dirceu [1] ; Bagnato, Vanderlei Salvador [1] ; Kurachi, Cristina [1]
Número total de Autores: 6
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Sao Carlos Inst Phys, POB 369, BR-13560970 Sao Carlos, SP - Brazil
[2] Amaral Carvalho Fdn, Skin Dept, Jau - Brazil
[3] Fed Univ Amapa UNIFAP, Sci & Technol Dept, BR-68903419 Macapa, Amapa - Brazil
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: Journal of Applied Physics; v. 124, n. 4 JUL 28 2018.
Citações Web of Science: 0
Resumo

Skin cancer is the cancer type with the highest incidence in the world. Its diagnosis requires a specialist physician, with expertise in skin diagnostics. Thermography is a noninvasive technique based on the detection of infrared emission that is completely safe to humans. In this study, thermal images of clinically similar lesions were registered and analyzed aiming to provide a noninvasive diagnostic information for discrimination of: basal cell carcinoma versus intradermal nevus, squamous cell carcinoma versus actinic keratosis, and melanoma versus pigmented seborrheic keratosis. Thermal images were analyzed using a MATLAB (R) routine to evaluate statistical, histogram, and filtering metrics of each image, and a support vector machine classifier was used to discriminate the lesions based on those metrics values. Actinic keratoses and squamous cell carcinoma showed distinct average temperatures, whereas the other pairs of lesions presented similar temperatures. Nevertheless, the benign lesions showed higher definition of borders detection than malignant lesions, as a general rule. The results showed that support vector machine classifier has great ability for discrimination of clinically similar lesions based on their thermal images, suggesting that the thermography can be used as an auxiliary tool for the diagnosis of skin malignant lesions. Published by AIP Publishing. (AU)

Processo FAPESP: 13/07276-1 - CEPOF - Centro de Pesquisa em Óptica e Fotônica
Beneficiário:Vanderlei Salvador Bagnato
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs
Processo FAPESP: 14/50857-8 - INCT 2014 - de Óptica Básica e Aplicada às Ciências da Vida
Beneficiário:Vanderlei Salvador Bagnato
Modalidade de apoio: Auxílio à Pesquisa - Temático