Busca avançada
Ano de início
Entree
Conteúdo relacionado
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

ON ANNULAR MAPS OF THE TORUS AND SUBLINEAR DIFFUSION

Texto completo
Autor(es):
Davalos, Pablo
Número total de Autores: 1
Tipo de documento: Artigo Científico
Fonte: JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU; v. 17, n. 4, p. 913-978, SEP 2018.
Citações Web of Science: 0
Resumo

A classical article by Misiurewicz and Ziemian (J. Lond. Math. Soc. 40(2) (1989), 490-506) classifies the elements in Homeo(0)(T-2) by their rotation set rho, according to wether rho is a point, a segment or a set with nonempty interior. A recent classification of nonwandering elements in Homeo(0)(T-2) by Koropecki and Tal was given in (Invent. Math. 196 (2014), 339-381), according to the intrinsic underlying ambient space where the dynamics takes place: planar, annular and strictly toral maps. We study the link between these two classifications, showing that, even abroad the nonwandering setting, annular maps are characterized by rotation sets which are rational segments. Also, we obtain information on the sublinear diffusion of orbits in the-not very well understood-case that rho has nonempty interior. (AU)

Processo FAPESP: 11/14122-5 - Conjunto de Rotação de Homeomorfismos do Toro
Beneficiário:Pablo Dávalos de La Peña
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado