Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

A discussion on significance indices for contingency tables under small sample sizes

Texto completo
Autor(es):
Oliveira, Natalia L. [1] ; Pereira, Carlos A. de B. [2] ; Diniz, Marcio A. [3] ; Polpo, Adriano [3]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Carnegie Mellon Univ, Dept Stat & Data Sci, Pittsburgh, PA 15213 - USA
[2] Univ Sao Paulo, Dept Stat, Sao Paulo - Brazil
[3] Univ Fed Sao Carlos, Dept Stat, Sao Carlos, SP - Brazil
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: PLoS One; v. 13, n. 8 AUG 2 2018.
Citações Web of Science: 3
Resumo

Hypothesis testing in contingency tables is usually based on asymptotic results, thereby restricting its proper use to large samples. To study these tests in small samples, we consider the likelihood ratio test (LRT) and define an accurate index for the celebrated hypotheses of homogeneity, independence, and Hardy-Weinberg equilibrium. The aim is to understand the use of the asymptotic results of the frequentist Likelihood Ratio Test and the Bayesian FBST (Full Bayesian Significance Test) under small-sample scenarios. The proposed exact LRT p-value is used as a benchmark to understand the other indices. We perform analysis in different scenarios, considering different sample sizes and different table dimensions. The conditional Fisher's exact test for 2 x 2 tables and the Barnard's exact test are also discussed. The main message of this paper is that all indices have very similar behavior, except for Fisher and Barnard tests that has a discrete behavior. The most powerful test was the asymptotic p-value from the likelihood ratio test, suggesting that is a good alternative for small sample sizes. (AU)

Processo FAPESP: 12/16669-4 - Índices de significância para tabelas de contingência
Beneficiário:Natália Lombardi de Oliveira
Modalidade de apoio: Bolsas no Brasil - Iniciação Científica