Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Controlling population structure in the genomic prediction of tropical maize hybrids

Texto completo
Autor(es):
Lyra, Danilo Hottis [1, 2] ; Correia Granato, Italo Stefanine [1] ; Pinho Morais, Pedro Patric [1] ; Alves, Filipe Couto [1] ; Marcondes dos Santos, Anna Rita [1] ; Yu, Xiaoqing [3] ; Guo, Tingting [3] ; Yu, Jianming [3] ; Fritsche-Neto, Roberto [1]
Número total de Autores: 9
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Dept Genet, Luiz de Queiroz Coll Agr, Sao Paulo - Brazil
[2] Rothamsted Res, Dept Computat & Analyt Sci, Harpenden, Herts - England
[3] Iowa State Univ, Dept Agron, Ames, IA 50011 - USA
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: MOLECULAR BREEDING; v. 38, n. 10 OCT 2018.
Citações Web of Science: 0
Resumo

In tropical maize breeding programs where more than two heterotic groups are crossed, factors such as population structure (PS) can influence the achievement of reliable estimates of genomic breeding values (GEBVs) for complex traits. Hence, our objectives were (i) to investigate PS in a set of tropical maize inbreds and their derived hybrids, and (ii) to control PS in genomic predictions of single-crosses considering two scenarios: applying (1) the traditional GBLUP (GB) and four adjustment methods of PS in the whole group, and (2) homogeneous- (A-GB), within- (W-GB), multi- (MG-GB), and across-group (AC-GB) analysis in stratified groups. Three subpopulations were identified in the inbred lines and hybrids based on fineSTRUCTURE results. Adding four different sets of PS as covariates to the prediction model did not improve the predictive ability (r). However, using non-metric multidimensional scaling and fineSTRUCTURE group clustering increased the reliability of GEBV estimation for grain yield and plant height, respectively. The W-GB analysis in the stratified groups resulted in low r, mostly due to the reduction of training size. On the other hand, A-GB and MG-GB showed similar r for both traits. However, MG-GB presented higher broad sense genomic heritabilities compared to A-GB, efficiently controlling heterogeneity of marker effects between subpopulations. The r of the AC-GB method was low when predicting groups genetically distant. We conclude that predicting hybrid phenotypes by using PS covariates and multi-group analysis in stratified clusters may be an efficient method, increasing reliability and predictive ability, respectively. (AU)

Processo FAPESP: 13/24135-2 - Associação genômica para eficiência no uso de nitrogênio e seus componentes em linhagens de milho tropical
Beneficiário:Roberto Fritsche Neto
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 14/26326-2 - Acurácia de modelos não-aditivos de seleção genômica para eficiência no uso de nitrogênio em híbridos de milho tropical
Beneficiário:Danilo Hottis Lyra
Modalidade de apoio: Bolsas no Brasil - Doutorado
Processo FAPESP: 15/14376-8 - Acurácia de modelos não-aditivos e estrutura populacional de seleção genômica de milho
Beneficiário:Danilo Hottis Lyra
Modalidade de apoio: Bolsas no Exterior - Estágio de Pesquisa - Doutorado