Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Boosting collaborative filtering with an ensemble of co-trained recommenders

Texto completo
Autor(es):
da Costa, Arthur F. [1] ; Manzato, Marcelo G. [1] ; Campello, Ricardo J. G. B. [1, 2]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Inst Math & Comp Sci, Sao Paulo, SP - Brazil
[2] Univ Newcastle, Sch Math & Phys Sci, Callaghan, NSW - Australia
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: EXPERT SYSTEMS WITH APPLICATIONS; v. 115, p. 427-441, JAN 2019.
Citações Web of Science: 2
Resumo

Collaborative Filtering (CF) is one of the best performing and most widely used approaches for recommender systems. Although significant progress has been made in this area, current CF methods still suffer from cold-start and sparsity problems. A primary issue is that the fraction of users willing to rate items tends to be very small in most practical applications, which causes the number of users and/or items with few or no interactions in recommendation databases to be large. As a direct consequence of ratings sparsity, recommender algorithms may provide poor recommendations (reducing accuracy) or decline recommendations (reducing coverage). This paper proposes an ensemble scheme based on a co-training approach, named ECoRec, that drives two or more recommenders to agree with each others' predictions to generate their own. The experiments on eight real-life public databases show that better accuracy can be obtained when recommender algorithms are simultaneously trained from multiple views and combined into an ensemble to make predictions. (C) 2018 Elsevier Ltd. All rights reserved. (AU)

Processo FAPESP: 16/20280-6 - Organização Semântica de Anotações Colaborativas de Usuários Aplicada em Sistemas de Recomendação
Beneficiário:Marcelo Garcia Manzato
Modalidade de apoio: Auxílio à Pesquisa - Regular