Application of adaptive optics for illumination st... - BV FAPESP
Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Application of adaptive optics for illumination stability in precision radial velocity measurements in astronomical spectroscopy

Texto completo
Autor(es):
Mello, Alexandre J. T. S. [1, 2] ; Bouchez, Antonin H. [1] ; Szentgyorgyi, Andrew [3] ; van Dam, Marcos A. [4] ; Lupinari, Henrique [5]
Número total de Autores: 5
Afiliação do(s) autor(es):
[1] GMTO Corp, 465 N Halstead St, Pasadena, CA 91125 - USA
[2] Univ Tecnol Fed Parana, Dept Elect Engn, Av Sete Setembro 3165, Curitiba, PR - Brazil
[3] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02140 - USA
[4] Flat Wavefronts, 21 Lascelles St, Christchurch 8022 - New Zealand
[5] Univ Sao Paulo, Inst Astron Geophys & Atmospher Sci, Rua Matao 1226, Sao Paulo, SP - Brazil
Número total de Afiliações: 5
Tipo de documento: Artigo Científico
Fonte: Monthly Notices of the Royal Astronomical Society; v. 481, n. 3, p. 3804-3809, DEC 2018.
Citações Web of Science: 0
Resumo

Adaptive optics (AO) have been used to correct wavefronts to achieve diffraction limited point spread functions in a broad range of optical applications, prominently ground-based astronomical telescopes operating in near infrared. While most AO systems cannot provide diffraction-limited performance in the optical passband (400-900 nm), AO can improve image concentration, as well as both near and far field image stability, within an AO-fed spectrograph. Enhanced near and far field stability increases wavelength-scale stability in high dispersion spectrographs. In this work, we describe detailed modelling of the stability improvements achievable on extremely large telescopes. These improvements in performance may enable the mass measurement of Earth Twins by the precision radial velocity method, and the discovery of evidence of exobiotic activity in exoplanet atmospheres with the next generation of extremely large telescopes (ELTs). In this paper, we report on numerical simulations of the impact of AO on the performance of the GMT-Consortium Large Earth Finder (G-CLEF) instrument for the future Giant Magellan Telescope (GMT). The proximate cause of this study is to evaluate what improvements AO offer for exoplanet mass determination by the precision radial velocity method and the discovery of biomarkers in exoplanet atmospheres. A modified AO system capable of achieving this improved stability even with changing conditions is proposed. (AU)

Processo FAPESP: 11/51680-6 - Explorando o universo: da formação de galáxias aos planetas tipo-Terra, com o Telescópio Gigante Magellan
Beneficiário:Laerte Sodré Junior
Modalidade de apoio: Auxílio à Pesquisa - Projetos Especiais