Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

A second-order statistics method for blind source separation in post-nonlinear mixtures

Texto completo
Autor(es):
Fantinato, Denis G. [1] ; Duarte, Leonardo T. [2] ; Deville, Yannick [3] ; Attux, Romis [4] ; Jutten, Christian [5] ; Neves, Aline [6]
Número total de Autores: 6
Afiliação do(s) autor(es):
[1] Fed Univ ABC, Math Computat & Cognit Ctr CMCC, Santo Andre, SP - Brazil
[2] Univ Estadual Campinas, Sch Appl Sci, Limeira, SP - Brazil
[3] Univ Toulouse, IRAP, CNES, CNRS, UPS, F-31400 Toulouse - France
[4] Univ Estadual Campinas, Sch Elect & Comp Engn FEEC, Campinas, SP - Brazil
[5] CNRS, GIPSA Lab, Grenoble INP, Grenoble - France
[6] Fed Univ ABC, Engn Modeling & Appl Social Sci Ctr CECS, Santo Andre, SP - Brazil
Número total de Afiliações: 6
Tipo de documento: Artigo Científico
Fonte: Signal Processing; v. 155, p. 63-72, FEB 2019.
Citações Web of Science: 1
Resumo

In the context of nonlinear Blind Source Separation (BSS), the Post-Nonlinear (PNL) model is of great importance due to its suitability for practical nonlinear problems. Under certain mild constraints on the model, Independent Component Analysis (ICA) methods are valid for performing source separation, but requires use of Higher-Order Statistics (HOS). Conversely, regarding the sole use of the Second-Order Statistics (SOS), their study is still in an initial stage. In that sense, in this work, the conditions and the constraints on the PNL model for SOS-based separation are investigated. The study encompasses a time-extended formulation of the PNL problem with the objective of extracting the temporal structure of the data in a more extensive manner, considering SOS-based methods for separation, including the proposition of a new one. Based on this, it is shown that, under some constraints on the nonlinearities and if a given number of time delays is considered, source separation can be successfully achieved, at least for polynomial nonlinearities. With the aid of metaheuristics called Differential Evolution and Clonal Selection Algorithm for optimization, the performances of the SOS-based methods are compared in a set of simulation scenarios, in which the proposed method shows to be a promising approach. (C) 2018 Elsevier B.V. All rights reserved. (AU)

Processo FAPESP: 17/11488-5 - Análise Multivariada da Estrutura Temporal de Dados para Separação Cega de Fontes no Contexto de Misturas Não Lineares e de Múltiplos Conjuntos de Dados
Beneficiário:Denis Gustavo Fantinato
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 15/23424-6 - Separação Cega de Fontes Não Linear no Contexto de Fontes Estatisticamente Dependentes
Beneficiário:Denis Gustavo Fantinato
Modalidade de apoio: Bolsas no Exterior - Estágio de Pesquisa - Doutorado