Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Effect of the magnetic field on the heat transfer coefficient of a Fe3O4-water ferrofluid using artificial intelligence and CFD simulation

Texto completo
Autor(es):
Khosravi, Ali [1] ; Malekan, Mohammad [2]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Fed Univ Minas Gerais UFMG, Grad Program Mech Engn, Belo Horizonte, MG - Brazil
[2] Univ Sao Paulo, Med Sch, Dept Bioengn, Heart Inst InCor, Sao Paulo, SP - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: EUROPEAN PHYSICAL JOURNAL PLUS; v. 134, n. 3 MAR 4 2019.
Citações Web of Science: 3
Resumo

.A ferrofluid is a magnetic fluid which is composed of magnetic nanoparticles with the size of 5-15nm immersed in a base fluid (such as water, oil, etc.). Although the amount of thermal conductivity of the magnetic nanoparticles is lower than that of metallic and metallic oxide nanoparticles, their constructability by magnetic field makes them ideal to be used in heat transfer applications. In this study, the heat transfer coefficient (HTC) of the Fe3O4 nanoparticles dispersed in water under constant and alternating magnetic field is investigated by artificial intelligence methods and CFD simulation. Multilayer feed-forward neural network, group method of data handling type neural network, support vector regression model and adaptive neuro-fuzzy inference system are developed to predict the HTC of the Fe3O4-water ferrofluid under magnetic field. Volume fraction of nanoparticle, intensity of the magnetic field, frequency of the magnetic field, Reynolds number and dimensionless distance of the tube are selected as input variables of the networks and the HTC is selected as output variable of the network. The results show that artificial intelligence methods can successfully predict the target with very good accuracy. (AU)

Processo FAPESP: 17/20994-1 - Simulação fluido-estrutura do dispositivo de assistência ventricular (DAV) InCor
Beneficiário:Mohammad Malekan
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado