Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

High-throughput solid solution strengthening characterization in high entropy alloys

Texto completo
Autor(es):
Coury, Francisco Gil [1, 2] ; Wilson, Paul [3] ; Clarke, Kester D. [2] ; Kaufman, Michael J. [2] ; Clarke, Amy J. [2]
Número total de Autores: 5
Afiliação do(s) autor(es):
[1] Univ Fed Sao Carlos, Rod Washington Luis, Km 235, BR-13565905 Sao Carlos, SP - Brazil
[2] Colorado Sch Mines, 1500 Illinois St, Golden, CO 80401 - USA
[3] Boeing Co, POB 516, St Louis, MO 63166 - USA
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: ACTA MATERIALIA; v. 167, p. 1-11, APR 1 2019.
Citações Web of Science: 6
Resumo

While some high entropy alloys (HEAs) have been shown to display remarkable combinations of properties, exploration of the extensive multicomponent space by conventional methods is experimentally intractable. Thus, identifying and developing high-throughput screening methods is paramount to alloy design. Here, an experimental methodology is developed for rapid yield strength estimations of single-phase HEAs, which involves the production and testing of a compositionally-graded sample made by a diffusion-multiple approach. The sample is analyzed by a combination of nanoindentation and microstructural characterization, where the nanohardness results are analyzed by different conversion equations to determine yield strength. The values estimated by nanohardness agree with bulk tensile properties for a total of 8 compositions. Both are compared to a solid solution strengthening model, again yielding a good correlation. The experimental and simulation results indicate that, in this system, the strength is maximized when the atomic size mismatch is maximized. Furthermore, it is necessary to consider the strain hardening of these alloys to accurately estimate their strength by nanoindentation. A pathway is presented here. This work shows that high-throughput methodologies for predicting and measuring properties are promising for designing new HEAs with desirable combinations of properties. (C) 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. (AU)

Processo FAPESP: 18/08778-4 - Design e Produção de Ligas de Alta Entropia com Elevada Resistência Mecânica e Tenacidade para Aplicações como Revestimentos em Ambientes Extremos
Beneficiário:Francisco Gil Coury
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado