Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

The similarity-aware relational division database operator with case studies in agriculture and genetics

Texto completo
Autor(es):
Gonzaga, Andre dos Santos [1] ; Cordeiro, Robson L. F. [1]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, BR-13560970 Sao Carlos, SP - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: INFORMATION SYSTEMS; v. 82, p. 71-87, MAY 2019.
Citações Web of Science: 0
Resumo

In Relational Algebra, the operator Division (divided by) is an intuitive tool used to write queries with the concept of ``for all{''}, and thus, it is constantly required in real applications. However, as we demonstrate here, the division does not support many of the needs common to modern applications, particularly those that involve complex data analysis, such as processing images, audio, genetic data, large graphs, fingerprints, and many other ``non-traditional{''} data types. The main issue is the existence of intrinsic comparisons of attribute values in the operator, which, by definition, are always performed by identity (=), despite the fact that complex data must be compared by similarity. Recent works focus on supporting similarity comparison in relational operators, but no one treats the division. This paper presents the new Similarity-aware Division ((divided by) over cap) operator. Our novel operator is naturally well suited to answer queries with an idea of ``candidate elements and exigencies{''} to be performed on complex data from modern applications. For example, it is potentially useful to support agriculture, genetic analyses, digital library search, prospective client identification, and even to help controlling the quality of manufactured products in industry. We validate our proposals by studying the first two of these applications. (C) 2019 Elsevier Ltd. All rights reserved. (AU)

Processo FAPESP: 18/05714-5 - Mineração de Fluxos de Dados Frequentes e de Alta Dimensionalidade: estudo de caso em jogos digitais
Beneficiário:Robson Leonardo Ferreira Cordeiro
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 15/05607-6 - Divisão relacional por similaridade em banco de dados: definição formal, incorporação à Álgebra relacional e desenvolvimento de algoritmos com estudo de caso em Agricultura
Beneficiário:André dos Santos Gonzaga
Modalidade de apoio: Bolsas no Brasil - Mestrado
Processo FAPESP: 14/21483-2 - Divisão relacional por similaridade em banco de dados
Beneficiário:Robson Leonardo Ferreira Cordeiro
Modalidade de apoio: Auxílio à Pesquisa - Regular