Propriedades de muitos corpos de Condensados de Bose-Einstein do método de Hartree...
Dinâmica coerente de elétrons e buracos em anéis semicondutores
Espalhamento Raman em fios quânticos: simetrias de inversão associado as interaçõe...
Texto completo | |
Autor(es): |
Número total de Autores: 4
|
Afiliação do(s) autor(es): | [1] Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 - USA
[2] Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel - Switzerland
[3] Univ Sao Paulo, Inst Fis Sao Carlos, BR-13560970 Sao Carlos, SP - Brazil
Número total de Afiliações: 3
|
Tipo de documento: | Artigo Científico |
Fonte: | Physical Review Letters; v. 122, n. 15 APR 18 2019. |
Citações Web of Science: | 0 |
Resumo | |
We derive a closed-form expression for the weak localization (WL) corrections to the magneto-conductivity of a 2D electron system with arbitrary Rashba alpha and Dresselhaus beta (linear) and beta(3) (cubic) spin-orbit interaction couplings, in a perpendicular magnetic field geometry. In a system of reference with an in-plane (z) over cap axis chosen as the high spin-symmetry direction at alpha = beta, we formulate a new algorithm to calculate the three independent contributions that lead to WL. The antilocalization is counterbalanced by the term associated with the spin relaxation along (z) over cap, dependent only on alpha - beta. The other term is generated by two identical scattering modes characterized by spin-relaxation rates which are explicit functions of the orientation of the scattered momentum. Excellent agreement is found with data from GaAs quantum wells, where, in particular, our theory correctly captures the shift of the minima of the WL curves as a function of alpha/beta. This suggests that the anisotropy of the effective spin-relaxation rates is fundamental to understanding the effect of the spin-orbit coupling in transport. (AU) | |
Processo FAPESP: | 16/50200-4 - Quantum correction to the conductivity of 2D electron gases near the Rashba-Dresselhaus SU(2) sysmmetry point |
Beneficiário: | José Carlos Egues de Menezes |
Modalidade de apoio: | Auxílio à Pesquisa - Regular |
Processo FAPESP: | 16/08468-0 - Isolantes topológicos e férmions de Majorana |
Beneficiário: | José Carlos Egues de Menezes |
Modalidade de apoio: | Auxílio à Pesquisa - Regular |