Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Convergence Analysis of a New MaxMin-SOMO Algorithm

Texto completo
Autor(es):
Khan, Atlas [1, 2] ; Qu, Yan-Peng [3] ; Li, Zheng-Xue [1]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Dalian Univ Technol, Dept Appl Math, Dalian 116024 - Peoples R China
[2] Univ Sao Paulo, Dept Comp & Math FFCLRP, Ribeirao Preto - Brazil
[3] Dalian Maritime Univ, Sch Informat Sci & Technol, Dalian 116026 - Peoples R China
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: INTERNATIONAL JOURNAL OF AUTOMATION AND COMPUTING; v. 16, n. 4, p. 534-542, AUG 2019.
Citações Web of Science: 0
Resumo

The convergence analysis of MaxMin-SOMO algorithm is presented. The SOM-based optimization (SOMO) is an optimization algorithm based on the self-organizing map (SOM) in order to find a winner in the network. Generally, through a competitive learning process, the SOMO algorithm searches for the minimum of an objective function. The MaxMin-SOMO algorithm is the generalization of SOMO with two winners for simultaneously finding two winning neurons i.e., first winner stands for minimum and second one for maximum of the objective function. In this paper, the convergence analysis of the MaxMin-SOMO is presented. More specifically, we prove that the distance between neurons decreases at each iteration and finally converge to zero. The work is verified with the experimental results. (AU)

Processo FAPESP: 12/23329-5 - Prediction of RNA-protein binding interactions in H. salinarum using machine learning techniques
Beneficiário:Atlas Khan
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado