Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Global regularity and solvability of left-invariant differential systems on compact Lie groups

Texto completo
Autor(es):
Araujo, Gabriel
Número total de Autores: 1
Tipo de documento: Artigo Científico
Fonte: ANNALS OF GLOBAL ANALYSIS AND GEOMETRY; v. 56, n. 4, p. 631-665, DEC 2019.
Citações Web of Science: 0
Resumo

We are interested in global properties of systems of left-invariant differential operators on compact Lie groups: regularity properties, properties on the closedness of the range and finite dimensionality of their cohomology spaces, when acting on various function spaces, e.g., smooth, analytic and Gevrey. Extending the methods of Greenfield and Wallach (Trans Am Math Soc 183:153-164, 1973) to systems, we obtain abstract characterizations for these properties and use them to derive some generalizations of results due to Greenfield (Proc Am Math Soc 31:115-118, 1972), Greenfield and Wallach (Proc Am Math Soc 31:112-114, 1972), as well as global versions of a result of Caetano and Cordaro (Trans Am Math Soc 363(1):185-201, 2011) for involutive structures. (AU)

Processo FAPESP: 18/12273-5 - Resolubilidade de estruturas localmente integráveis
Beneficiário:Gabriel Cueva Candido Soares de Araújo
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado