Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Corners of Leavitt path algebras of finite graphs are Leavitt path algebras

Texto completo
Autor(es):
Abrams, Gene [1] ; Nam, Tran Giang
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Univ Colorado, Dept Math, Colorado Springs, CO 80918 - USA
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: Journal of Algebra; v. 547, p. 494-518, APR 1 2020.
Citações Web of Science: 0
Resumo

We achieve an extremely useful description (up to isomorphism) of the Leavitt path algebra L-K(E) of a finite graph E with coefficients in a field K as a direct sum of matrix rings over K, direct sum with a corner of the Leavitt path algebra L-K(F) of a graph F for which every regular vertex is the base of a loop. Moreover, in this case one may transform the graph E into the graph F via some step-by-step procedure, using the ``source elimination{''} and ``collapsing{''} processes. We use this to establish the main result of the article, that every nonzero corner of a Leavitt path algebra of a finite graph is isomorphic to a Leavitt path algebra. Indeed, we prove a more general result, to wit, that the endomorphism ring of any nonzero finitely generated projective L-K(E)-module is isomorphic to the Leavitt path algebra of a graph explicitly constructed from E. Consequently, this yields in particular that every unital K-algebra which is Morita equivalent to a Leavitt path algebra is indeed isomorphic to a Leavitt path algebra. (C) 2019 Elsevier Inc. All rights reserved. (AU)

Processo FAPESP: 18/06538-6 - Álgebras de Leavitt de caminhos, álgebras de Steinberg e ações parciais.
Beneficiário:Tran Giang Nam
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado