Álgebras de Leavitt de caminhos, álgebras de Steinberg e ações parciais.
Soluções numéricas de problemas complexos de dinâmica dos fluidos por meio de técn...
Texto completo | |
Autor(es): |
Abrams, Gene
[1]
;
Nam, Tran Giang
Número total de Autores: 2
|
Afiliação do(s) autor(es): | [1] Univ Colorado, Dept Math, Colorado Springs, CO 80918 - USA
Número total de Afiliações: 1
|
Tipo de documento: | Artigo Científico |
Fonte: | Journal of Algebra; v. 547, p. 494-518, APR 1 2020. |
Citações Web of Science: | 0 |
Resumo | |
We achieve an extremely useful description (up to isomorphism) of the Leavitt path algebra L-K(E) of a finite graph E with coefficients in a field K as a direct sum of matrix rings over K, direct sum with a corner of the Leavitt path algebra L-K(F) of a graph F for which every regular vertex is the base of a loop. Moreover, in this case one may transform the graph E into the graph F via some step-by-step procedure, using the ``source elimination{''} and ``collapsing{''} processes. We use this to establish the main result of the article, that every nonzero corner of a Leavitt path algebra of a finite graph is isomorphic to a Leavitt path algebra. Indeed, we prove a more general result, to wit, that the endomorphism ring of any nonzero finitely generated projective L-K(E)-module is isomorphic to the Leavitt path algebra of a graph explicitly constructed from E. Consequently, this yields in particular that every unital K-algebra which is Morita equivalent to a Leavitt path algebra is indeed isomorphic to a Leavitt path algebra. (C) 2019 Elsevier Inc. All rights reserved. (AU) | |
Processo FAPESP: | 18/06538-6 - Álgebras de Leavitt de caminhos, álgebras de Steinberg e ações parciais. |
Beneficiário: | Tran Giang Nam |
Modalidade de apoio: | Bolsas no Brasil - Pós-Doutorado |