Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Homotopy of braids on surfaces: Extending Goldsmith's answer to Artin

Texto completo
Autor(es):
Theodoro De Lima, Juliana Roberta
Número total de Autores: 1
Tipo de documento: Artigo Científico
Fonte: JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS; v. 28, n. 12 OCT 2019.
Citações Web of Science: 0
Resumo

In 1947, in the paper ``Theory of Braids,{''} Artin raised the question of whether isotopy and homotopy of braids on the disk coincide. Twenty seven years later, Goldsmith answered his question: she proved that in fact the group structures are different, exhibiting a group presentation and showing that the homotopy braid group on the disk is a proper quotient of the Artin braid group on the disk B-n, denoted by ( B) over cap (n). In this paper, we extend Goldsmith's answer to Artin for closed, connected and orientable surfaces different from the sphere. More specifically, we define the notion of homotopy generalized string links on surfaces, which form a group which is a proper quotient of the braid group on a surface B-n (M), denoting it by (B) over cap (n )(M). We then give a presentation of the group (B) over cap (n) (M) and find that the Goldsmith presentation is a particular case of our main result, when we consider the surface M to be the disk. We close with a brief discussion surrounding the importance of having such a fixed construction available in the literature. (AU)

Processo FAPESP: 11/22285-1 - Teoremas da apresentação e da representação para grupos de Homotopias de tranças em superfícies
Beneficiário:Juliana Roberta Theodoro de Lima
Modalidade de apoio: Bolsas no Exterior - Estágio de Pesquisa - Doutorado