Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Towards automatically filtering fake news in Portuguese

Texto completo
Autor(es):
Silva, Renato M. [1] ; Santos, Roney L. S. [2] ; Almeida, Tiago A. [1] ; Pardo, Thiago A. S. [2]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Fed Sao Carlos, Dept Comp Sci, Sorocaba - Brazil
[2] Univ Sao Paulo, Interinst Ctr Computat Linguist NILC, Inst Math & Comp Sci, Sao Carlos - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: EXPERT SYSTEMS WITH APPLICATIONS; v. 146, MAY 15 2020.
Citações Web of Science: 0
Resumo

In the last years, the popularity of smartphones and social networks has been contributing to the spread of fake news. Through these electronic media, this type of news can deceive thousands of people in a short time and cause great harm to individuals, companies, or society. Fake news has the potential to change a political scenario, to contribute to the spread of diseases, and even to cause deaths. Despite the efforts of several studies on fake news detection, most of them only cover English language news. There is a lack of labeled datasets of fake news in other languages and, moreover, important questions still remain open. For example, there is no consensus on what are the best classification strategies and sets of features to be used for automatic fake news detection. To answer this and other important open questions, we present a new public and real dataset of labeled true and fake news in Portuguese, and we perform a comprehensive analysis of machine learning methods for fake news detection. The experiments were performed using different sets of features and employing different types of classification methods. A careful analysis of the results provided sufficient evidence to respond appropriately to the open questions. The various evaluated scenarios and the drawn conclusions from the results shed light on the potentiality of the methods and on the challenges that fake news detection presents. (C) 2020 Elsevier Ltd. All rights reserved. (AU)

Processo FAPESP: 18/02146-6 - Representação distribuída de textos com atualização incremental
Beneficiário:Renato Moraes Silva
Linha de fomento: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 17/09387-6 - Modelo de representação distribuída de textos com capacidade de evoluir continuamente
Beneficiário:Tiago Agostinho de Almeida
Linha de fomento: Auxílio à Pesquisa - Regular