Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

An extension of the non-inferior set estimation algorithm for many objectives

Texto completo
Autor(es):
Raimundo, Marcos M. [1] ; Ferreira, V, Paulo A. ; Von Zuben, Fernando J. [2]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Estadual Campinas, Sch Elect & Comp Engn, UNICAMP, Av Albert Einstein 400, BR-13083852 Campinas, SP - Brazil
[2] Ferreira, Paulo A., V, Univ Estadual Campinas, Sch Elect & Comp Engn, UNICAMP, Av Albert Einstein 400, BR-13083852 Campinas, SP - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: European Journal of Operational Research; v. 284, n. 1, p. 53-66, JUL 1 2020.
Citações Web of Science: 0
Resumo

This work proposes a novel multi-objective optimization approach that globally finds a representative non-inferior set of solutions, also known as Pareto-optimal solutions, by automatically formulating and solving a sequence of weighted sum method scalarization problems. The approach is called MONISE (Many-Objective NISE) because it represents an extension of the well-known non-inferior set estimation (NISE) algorithm, which was originally conceived to deal with two-dimensional objective spaces. The proposal is endowed with the following characteristics: (1) uses a mixed-integer linear programming formulation to operate in two or more dimensions, thus properly supporting many (i.e., three or more) objectives; (2) relies on an external algorithm to solve the weighted sum method scalarization problem to optimality; and (3) creates a faithful representation of the Pareto frontier in the case of convex problems, and a useful approximation of it in the non-convex case. Moreover, when dealing specifically with two objectives, some additional properties are portrayed for the estimated non-inferior set. Experimental results validate the proposal and indicate that MONISE is competitive, in convex and non-convex (combinatorial) problems, both in terms of computational cost and the overall quality of the non-inferior set, measured by the acquired hypervolume. (C) 2019 Elsevier B.V. All rights reserved. (AU)

Processo FAPESP: 14/13533-0 - Otimização multiobjetivo em aprendizado multitarefa
Beneficiário:Marcos Medeiros Raimundo
Modalidade de apoio: Bolsas no Brasil - Doutorado