Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Computing fractal descriptors of texture images using sliding boxes: An application to the identification of Brazilian plant species

Texto completo
Autor(es):
Taraschi, Giovanni [1] ; Florindo, Joao B. [1]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Univ Estadual Campinas, Inst Math Stat & Sci Comp, Rua Sergio Buarque de Holanda 651, BR-13083859 Campinas, SP - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS; v. 545, MAY 1 2020.
Citações Web of Science: 0
Resumo

This work proposes a new model based on fractal descriptors for the classification of grayscale texture images. The method consists of scanning the image with a sliding box and collecting statistical information about the pixel distribution. Varying the box size, an estimation of the fractality of the image can be obtained at different scales, providing a more complete description of how such parameter changes in each image. The same strategy is also applied to a especial encoding of the image based on local binary patterns. Descriptors both from the original image and from the local encoding are combined to provide even more precise and robust results in image classification. A statistical model based on the theory of sliding window detection probabilities and Markov transition processes is formulated to explain the effectiveness of the method. The descriptors were tested on the identification of Brazilian plant species using scanned images of the leaf surface. The classification accuracy was also verified on three benchmark databases (KTH-TIPS2-b, UIUC and UMD). The results obtained demonstrate the power of the proposed approach in texture classification and, in particular, in the practical problem of plant species identification. (C) 2019 Elsevier B.V. All rights reserved. (AU)

Processo FAPESP: 16/16060-0 - Reconhecimento de Padrões em Imagens Baseado em Sistemas Complexos
Beneficiário:Joao Batista Florindo
Modalidade de apoio: Auxílio à Pesquisa - Regular